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ABSTRACT 

Transfers between coplanar coaxial ellipses in a strong inverse 
square gravitational field are investigated. The control acceleration 
is provided by a combination of ideal velocity limited and ideal power 
limited rockets. Since the acceleration of the power limited rocket 
is assumed to be much smaller than gravity, that phase of the transfer 
is a slow spiral over many orbits. The velocity limited rocket is 
assumed capable of impulsive thrust. The combination of impulsive 
with continuous control accelerations introduces complexities in the 
optimal control problem which are not present in the independent study 
of either one. A general cost function for ideal engines and necessary 
conditions for transfers in an arbitrary gravitational field are 
derived in a form for application to orbital transfers. The solutions 
for field free space transfers are given. The necessary conditions 
for optimal transfers between coplanar coaxial elliptic orbits are 
derived and then solved on a digital computer. The number and timing 
of impulses are numerically determined. A substantial improvement in 
payload is obtained by the optimum combination of propulsion systems. 
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Chapter  1 

INTRODUCTION 

A s  t h e  s c i e n t i f i c  g o a l s  f o r  e a r t h  o r b i t a l  and p l a n e t a r y  mis s ions  

a r e  becoming more a m b i t i o u s ,  t h e r e  i s  t h e  cont inued d e s i r e  f o r  h i g h e r  

payload through b e t t e r  u s e  of  a v a i l a b l e  p r o p u l s i o n  sys t ems .  Low t h r u s t  

r o c k e t s  w i t h  a h i g h e r  s p e c i f i c  impulse (pounds of  t h r u s t  p e r  pound o f  

f u e l  p e r  second)  have been t e s t e d  and w i l l  soon be a v a i l a b l e  f o r  

o p e r a t i o n a l  u s e .  High t h r u s t  chemica l  r o c k e t s  w i t h  a  lower s p e c i f i c  

impulse have been  used  e x c l u s i v e l y  f o r  a l l  space  mis s ions  c a r r i e d  o u t  

t o  d a t e  and a r e  n e c e s s a r y  f o r  i n i t i a l  i n s e r t i o n  i n t o  o r b i t  f o r  any 

mis s ion .  Although t r a n s f e r s  u s i n g  e i t h e r  pu re  h igh  o r  pu re  low t h r u s t  

have been s t u d i e d  e x t e n s i v e l y  i n  t h e  p a s t ,  t h e  combinat ion has  r e -  

ce ived  l i t t l e  a t t e n t i o n .  The p o s s i b i l i t y  o f  improved e f f i c i e n c y  u s i n g  

t h e  combinat ion  of  b o t h  types  of  r o c k e t s  i s  an impor t an t  a r e a  t o  be 

exp lo red .  Payload improvements a r e  o b t a i n e d  f o r  a  c l a s s  of  o r b i t a l  

t r a n s f e r s  u s i n g  t h e  combinat ion of  i d e a l  v e l o c i t y  l i m i t e d  (h igh  t h r u s t )  

and i d e a l  power l i m i t e d  (low t h r u s t )  r o c k e t s .  

The two t y p e s  o f  engines  cons ide red  a r e  l i m i t e d  by t h e i r  b a s i c  

o p e r a t i n g  c h a r a c t e r i s t i c s .  For v e l o c i t y  l i m i t e d  r o c k e t s ,  t h e  p ro -  

p e l l a n t  i s  t h e  p roduc t  of a  combustion which a l s o  p rov ides  t h e  p r o -  

p u l s i v e  ene rgy .  The exhaus t  v e l o c i t y  of  t h e  p r o p e l l a n t  and t h u s  t h e  

s p e c i f i c  impulse o f  t h e  engine  i s  l i m i t e d  by t h e  a t t a i n a b l e  chamber 

t empera tu re s  and t h e  molecular  weight  of  t h e  p r o p e l l a n t .  However, 

t h e  power a v a i l a b l e  i s  p r o p o r t i o n a l  t o  t h e  f u e l  f low r a t e  and t h u s  t h e  

p o s s i b l e  t h r u s t  l e v e l  i s  v e r y  l a r g e .  In  t h e  payload o p t i m i z a t i o n  u s i n g  

such  an e n g i n e ,  an impulse i s  t h e o r e t i c a l l y  o p t i m a l ,  and w i t h  r e s p e c t  

t o  o r b i t a l  t r a n s f e r  t i m e s ,  can be ach ieved .  Only t h e  e f f i c i e n c y  of 

t h e  engine  ( s p e c i f i c  impulse)  and n o t  t h e  t h r u s t  l e v e l  i s  l i m i t e d  by 

t h e  exhaus t  v e l o c i t y ,  



Ion engines are limited by the propulsive power available. An 

independent electrical power supply is used to generate a field which 

accelerates the ionized propellant. For any mission, the power 

available is assumed proportional to the power supply mass which is 

fixed and independent of the propellant. This mass, which is not 

normally considered as part of the payload, must be optimally chosen 

to provide enough power with the minimum extra mass. With limited 

power, a high exhaust velocity is possible only for low acceleration 

levels. Optimal pure low thrust transfers have a continuous, but not 

necessarily constant, thrusting at the lowest acceleration level which 

will accomplish the transfer in the specified time of flight. The 

low thrust payload increases with longer times of flight since the 

necessary acceleration can be lower. The advantage of the high 

specific impulse which is provided by a power limited engine is ob- 

tained at the expense of longer times of flight and a separate power 

supply. 

The combination of rockets has the promise of an improvement in 

payload over either type used independently. If a long time of flight 

is possible, the use of low thrust can certainly improve the payload 

over pure high thrust. But even when low thrust can be used effec- 

tively, a high thrust rocket is required for initial insertion into 

orbit and can improve the payload by its use at opportune times during 

a transfer when the low thrust rocket has too low an efficiency due 

to the high acceleration required. Missions which require a power 

supply in the final orbit for communications or experimental purposes 

provide further motivation for the consideration of the combination. 

The mass of this power supply, me, is dead weight for high thrust 

transfers, but can be used to good advantage for a low thrust phase. 

If the optimum power plant mass is larger than me, the undesired 



portion will be dropped at the final time. Otherwise, use of me as 

the power plant mass maximizes the payload. For non-zero me or for a 

long time of flight, the combination of high and low thrust always has 

a higher payload than pure high thrust. If the time of flight is very 

long, the high thrust will only be used for initial insertion into or- 

bit and low thrust will complete the transfer. 

Optimal mixed thrust transfers between coplanar coaxial elliptic 

orbits in a central inverse square gravitational field are studied. 

Within the assumptions used here, the pure high and pure low thrust 

transfers have complete closed form analytic solutions. For the com- 

bination of the propulsion systems, the dynamic optimization problem 

is analytically reduced to the maximization of a payload expression 

over several free parameters. These maxima are numerically found for 

a large variety of specific transfers in this general class. 

1.1 The assumptions used - 
Since some assumptions are necessary to obtain the pure high and 

pure low thrust analytic solutions, similar assumptions are required 

for the analysis of the more complicated combination of propulsion 

modes. The ideal engine assumptions allow an explicit integration 

of the mass flow differential equation for the combination of engines. 

The resultant payload expression is then maximized for particular 

transfers. An assumption on the magnitude of the low thrust accelera- 

tion in comparison to the gravitational acceleration has many rami- 

fications which specialize the nature of the orbital transfers being 

considered. As a result of all of these assumptions, the complicated 

dynamic optimization problem for orbital transfers is reduced to the 

maximization of a payload expression over a few constant parameters. 



. The three masses considered in this ideal engine formulation are the 

the fuel, power supply, and payload. For real engines, there would 

also be the masses of the engines themselves, the fuel tanks, and 

structures, In addition, there are specific assumptions made about 

the operational capabilities of each class of engines. The high thrust 

is assumed capable of producing an impulsive thrust. The low thrust 

is assumed capable of operating at a variable exhaust velocity. Al- 

though all of these assumptions are only valid for preliminary mission 

studies, their use is justified because of the resultant analytic 

simplifications and their relationship to the fundamental characteris- 

tics of real engines. 

Spacecraft propelled by pure high thrust engines are assumed to 

have only the masses of the fuel and the payload. The efficiency of the 

engine is completely determined by the propellant exhaust velocity 

which is limited by the attainable chamber temperatures and the 

molecular weight of the propellant. The propellant is the product 

of the combustion which provides the propulsive energy. With this 

assumption, the mass flow differential equation can be easily inte- 

grated to give the fuel required for any specific maneuver. Since the 

high thrust levels possible in real engines are applied for a small 

fraction of the period of the orbits being considered, impulsive thrusts 

are analytically allowed without loss of significant accuracy. 

Spacecraft propelled by pure low thrust engines are assumed to 

have the masses of the propellant, power supply, and payload. The capa- 

bilities of these engines are determined by the mass and power capacity 

of the power supply. The propulsive power is separate from the pro- 

pellant and fixed for a particular mission. The size of the power 

supply can be optimally chosen and a portion (or all) of it dropped at 

the final time if solar cell panels provide the power. These assump- 

tions allol? an analytic solution of the mass differential equation 



and t h e  e x p l i c i t  cho ice  of  t h e  optimum power supply  s i z e .  S i n c e  no 

c o n s t r a i n t s  a r e  assumed on t h e  a l l o w a b l e  p r o p e l l a n t  exhaus t  v e l o c i t y ,  

it w i l l  b e  v a r i a b l e ,  depending on t h e  d e s i r e d  a c c e l e r a t i o n .  Although - 
a  v a r i a b l e  exhaus t  v e l o c i t y  w i l l  p robab ly  n o t  be f e a s i b l e  i n  a  r e a l  

eng ine ,  t h e  r e s u l t a n t  op t ima l  c o n t r o l  problem f o r m u l a t i o n  i s  s i m p l e r .  

The op t ima l  payload  and t r a j e c t o r y  p rov ide  a  good i n i t i a l  c o n d i t i o n  

f o r  a  numer i ca l  i t e r a t i o n  on t h e  more compl ica ted  problem f o r  r e a l  

eng ines .  

O r b i t a l  t r a n s f e r s  i n  a  s t r o n g ,  c e n t r a l ,  i n v e r s e  squa red  g r a v i t a -  

t i o n a l  f i e l d  a r e  cons ide red .  The low t h r u s t  a c c e l e r a t i o n  i s  assumed 

t o  be much s m a l l e r  t h a n  t h e  a c c e l e r a t i o n  o f  g r a v i t y .  Typ ica l  low 

t h r u s t  a c c e l e r a t i o n s  g ' s )  w i l l  be l e s s  t han  one p e r c e n t  of  t h e  

e a r t h ' s  g r a v i t y  o u t  t o  o r b i t a l  d i s t a n c e s  of  t e n  e a r t h  r a d i i .  Thus, 

by assumpt ion ,  o n l y  v a r i a t i o n s  i n  r a d i i  of  a  r a t i o  of t e n  w i l l  be 

c o n s i d e r e d .  With t h i s  r e s t r i c t i o n ,  op t ima l  h igh  t h r u s t  t r a n s f e r s  have 

- two impulses  a t  t h e  o p p o s i t e  apses  of  a  c o a s t i n g  o r b i t .  For a  low 

t h r u s t  phase ,  t h e r e  w i l l  on ly  be a  sma l l  change i n  t h e  o r b i t  d u r i n g  

any one o r b i t a l  p e r i o d .  For s i g n i f i c a n t  t r a n s f e r s  t o  be p o s s i b l e ,  t h e  

r e s u l t  w i l l  be a  slow s p i r a l  over  a  long t ime of f l i g h t  and o n l y  t h e  

s e c u l a r  v a r i a t i o n  i n  o r b i t a l  e lements  a r e  of  s i g n i f i c a n c e .  S ince  t h e  

t ime o f  h a l f  an  o r b i t a l  p e r i o d  i s  assumed t o  be a  smal l  f r a c t i o n  of  t h e  

t o t a l  f l i g h t  t i m e ,  any h igh  t h r u s t  t r a n s f e r  w i l l  be cons ide red  a s  

having  an open t ime of  f l i g h t .  For t h e  mixed t h r u s t  problem, two 

impulses  a p p l i e d  a t  t h e  o p p o s i t e  apses  of  an o r b i t  can be assumed t o  

occu r  a t  t h e  same t i m e ,  w i t h  r e s p e c t  t o  t h e  low t h r u s t  phase .  Also 

t h e  e f f e c t  o f  t h e  low t h r u s t  d u r i n g  t h i s  h a l f  o r b i t  can be n e g l e c t e d .  

1 . 2  H i s t o r y  o f  t h e  problem 

Two d i s t i n c t  c l a s s e s  o f  p r o p u l s i o n  systems a r e  cons ide red  f o r  

o r b i t a l  t r a n s f e r s .  I n  t h e  p a s t ,  independent  i n v e s t i g a t i o n s  of each 



c l a s s  have de t e rmined  t h e i r  r e l a t i v e  c a p a b i l i t i e s .  The g e n e r 2 l  

t h e o r i e s  f o r  t r a n s f e r s ,  a n a l y t i c  s o l u t i o n s ,  and r e s u l t s  f o r  s p e c i f i c  

mi s s ions  have been  developed.  ~ d e i b a u m ~  surveyed t h e  r e s u l t s  and 

compared t h e  n a t u r e  of  some s p e c i f i c  op t ima l  t r a n s f e r s  u s i n g  each  of  

t h e  two modes. I f  t h e  change i n  r a d i u s  i s  l e s s  t h a n  a  f a c t o r  of  

11 .94 ,  t h e  ~ o h m a n n l '  t r a n s f e r  between c o p l a n a r . c i r c u l a r  o r b i t s  u s i n g  

h i g h  t h r u s t  eng ines  was shown t o  be  op t ima l  by Hoelker  and S i l b e r .  10 

The t r a n s f e r  h a s  two impulses a t  t h e  o p p o s i t e  a p s e s  of  an e l l i p t i c  

c o a s t i n g  o r b i t .  By assumpt ion ,  o n l y  changes i n  r a d i u s  o f  l e s s  t h a n  

a  f a c t o r  of  t e n  a r e  be ing  cons ide red .  ~awden' '  summarized t h e s e  

r e s u l t s  and extended them t o  t r a n s f e r s  between cop lana r  c o a x i a l  

e l l i p s e s .  ~ d e l b a u m ' - ~  p r e s e n t e d  a n a l y t i c  s o l u t i o n s  f o r  a  v a r i e t y  

of  low t h r u s t  t r a n s f e r s .  For c o p l a n a r  c o a x i a l  t r a n s f e r s ,  he i n t e -  

g r a t e d  t h e  e q u a t i o n s  of  motion and a l s o  s o l v e d  f o r  t h e  boundary 

c o n d i t i o n s  on t h e  c o s t a t e  v a r i a b l e s .  These r e s u l t s  a r e  expanded i n  

Appendix D .  

~ d e l b a u m '  , ~ i m ~ l e ~  , ~ a z e l r i ~ ~ '  , and ~ r o d z o v s k ~ ~  cons ide red  t h e  

g e n e r a l  op t ima l  combinat ion  of  p r o p u l s i o n  modes and demonst ra ted  t h e i r  

f e a s i b i l i t y .  They r e s t r i c t e d  t h e i r  a n a l y s i s  t o  e l emen ta ry  t r a n s f e r s  

and d i d  n o t  i n v e s t i g a t e  t h e  g e n e r a l  n a t u r e  of  such  t r a j e c t o r i e s  

Other  s t u d i e s  have cons ide red  t h e  combinat ion ,  b u t  t h e  m i s s i o n  

assumpt ions  c o n s t r a i n e d  t h e  a n a l y s i s  and few t h e o r e t i c a l  p r i n c i p l e s  

r e s u l t e d .  ~ r o d z o v s k ~  p r e s e n t e d  a  c o s t  f u n c t i o n  f o r  t h e  combinat ion  

which d i d  n o t  c o n s i d e r  r e t e n t i o n  of  any o r  a l l  o f  t h e  power p l a n t .  

H i s  r e s u l t s  a r e  expanded i n  Appendix B t o  i n c l u d e  t h i s  p o s s i b i l i t y .  

I n  t h e  p a s t ,  t h e  combinat ion of p r o p u l s i o n  modes has  n o t  been cons ide red  

f o r  any g e n e r a l  c l a s s  of  t r a n s f e r s ,  excep t  i n  f i e l d  f r e e  space  



1.3 The approach used 

Before considering the problem of optimal orbital transfers, some 

preliminary derivations are carried out. A payload expression is 

derived and optimal transfers in general gravitational fields are 

considered. The dynamics of the payload differential equations are 

completely solved. The results are applied to the simple example of 

transfers in field free space. Then the dynamics of an orbital trans- 

fer problem in a central inverse square gravitational field are solved, 

resulting in a payload expression which must be maximized over several 

free parameters. The results of the numerical maximization are pre- 

sented to complete the treatment of coplanar coaxial transfers. 

Each chapter contains only those equations which are necessary 

for the discussion of results. The required derivations appear in the 

appendices. In general each chapter has an appendix which parallels, 

but does not duplicate, the chapter. In the following discussion of 

each chapter, the corresponding appendices are indicated. 

In Chapter 2 (and Appendix B) a cost function is derived for ideal 

engines from the basic principles of momentum and power. The resultant 

complicated mass flow equations are simplified by the introduction 

of some intermediate differential equations which are analytically 

solvable. Using the new mass differential equations to define the 

payload, the general optimization problem for transfers in an arbitrary 

gravitational field is formed. Some of the resultant set of necessary 

conditions are analytically solved to yield a simplified set of neces- 

sary conditions for this general problem. Necessary conditions across 

an impulse are also derived. A different problem simply representing 

a convenient change of state variables is also given, along with its 

solution. The form and characteristics of the final necessary con- 

ditions are discussed. 



The problems o f  t r a n s f e r s  i n  f i e l d  f r e e  space  a r e  c o n s i d e r e d  i n  

Chapter  3 (and Appendix C )  i n  o r d e r  t o  o b t a i n  a s  much i n s i g h t  a s  

p o s s i b l e  i n t o  t h e  b a s i c  c h a r a c t e r i s t i c s  o f  t h e  problem. F i r s t  t h e  

g e n e r a l  form o f  t h e  s o l u t i o n  i s  g i v e n  and d i s c u s s e d  and t h e  s p e c i f i c  

example of  a  change i n  v e l o c i t y  i s  c o n s i d e r e d .  The optimum payload  

f o r  t h i s  problem can be ob ta ined  a n a l y t i c a l l y  f o r  a l l  c a s e s  e x c e p t  

one .  A t a b l e  of  t h e s e  optimum payloads  i n  g iven  a long w i t h  p l o t s  

of  t h e  pay load  improvements. The r e s u l t s  and c h a r a c t e r i s t i c s  of  t h e  

problem a r e  d i s c u s s e d .  

The a n a l y s i s  f o r  t r a n s f e r s  between cop lana r  c o a x i a l  e l l i p s e s  i s  

p r e s e n t e d  i n  Chapter  4 (and Appendix D ) .  The d i f f e r e n t i a l  e q u a t i o n s  

o f  mot ion ,  w i t h  t h e i r  boundary c o n d i t i o n s ,  a r e  comple te ly  s o l v e d  w i t h i n  

t h e  assumpt ions  used  h e r e .  The p o s s i b l e  t iming  of  impulses w i t h  r e s -  

p e c t  t o  t h e  low t h r u s t  phase i s  assumed, s i n c e  t h e  t iming d u r i n g  any 

one o r b i t  i s  known. For t h i s  assumed mode, exp res s ions  a r e  d e r i v e d  

f o r  t h e  payload  and t h e  c o n d i t i o n s  which must be s a t i s f i e d  t o  maximize 

t h e  payload .  F u r t h e r  c o n d i t i o n s  a r e  p r e s e n t e d  which can be t e s t e d  t o  

v e r i f y  t h e  v a l i d i t y  of  t h e  assumpt ions  on t h e  t iming of t h e  impu l ses .  

I n  Chapter  5 (and Appendices D and E )  t h e  numer ica l  s o l u t i o n s  of  

t h e  n e c e s s a r y  c o n d i t i o n s  o b t a i n e d  i n  t h e  p r e v i o u s  c h a p t e r  a r e  d i s c u s s e d  

f o r  a  l a r g e  number o f  c i r c l e  t o  c i r c l e  t r a n s f e r s  and some e l l i p s e  t o  

e l l i p s e  t r a n s f e r s .  The equa t ions  employed do n o t  have any s p e c i a l  

p r o p e r t i e s  f o r  t h e  s e t  of t r a n s f e r s  s t u d i e d  and should  y i e l d  s i m i l a r  

r e s u l t s  f o r  a l l  cop lana r  c o a x i a l  t r a n s f e r s .  The numer ica l  t echn iques  

employed and t h e  d i f f i c u l t i e s  encountered  a r e  d i s c u s s e d .  P l o t t e d  r e -  

s u l t s  a r e  g iven  b o t h  o f  t h e  improvements i n  payload  and of  t h e  o r b i t a l  

p a t h s  fo l lowed  i n  t h e  t r a n s f e r s .  

The r e s u l t s  a r e  summarized and recommendations f o r  f u r t h e r  r e s e a r c h  

a r e  g i v e n  i n  Chapter  6 .  



Chapter 2 

TRANSFERS IN AN ARBITRARY GRAVITATIONAL FIELD 

An optimal control problem for the maximization of payload is 

derived and presented for transfers in an arbitrary gravitational field. 

After a partial solution of the complete problem, a simplified set of 

necessary conditions for the controls is presented as a function of a 

"primer vector". The primer vector is identified for two different 

forms of differential equations which might represent the vehicle's 

motion in a position dependent gravitational field. 

The ideal engine assumptions described in Chapter 1 are used to 

derive fuel flow differential equations from basic physics. These 

equations can be completely solved in terms of some integrals of the 

control accelerations. The final mass, after all fuel has been burned 

and any undesired power plant has been discarded, is defined as the 

payload. A more convenient set of differential equations are then 

derived which can be used to define the payload. 

This expression for payload is used as the "cost function" to be 

maximized for a general optimal control problem. The payload and 

vehicle differential equations are adjoined together with appropriate 

costare multipliers to form the Hamiltonian. Since the vehicle dynamics 

do not directly enter the cost function, the problem can be logically 

divided into two parts, the payload and vehicle dynamics. Due to this 

separation, the payload costate differential equations are independent 

of the state and only a function of the controls, A_. These payload 

costate differential equations with their boundary conditions can be 

completely solved in terms of the control integrals which define the 

payload. After eliminating these costates, the resultant Hamiltonian is 

only a function of the vehicle dynamics and the appropriate controls. 

In payload optimizations for transfers which can be described by 



t h e  two p o s s i b l e  s e t s  of v e h i c l e  dynamics p r e s e n t e d  h e r e ,  t h e  pay load  

d i f f e r e n t i a l  e q u a t i o n s  must always be  s o l v e d  i n  t h e  manner o f  t h i s  

c h a p t e r .  For c l a r i t y  of  d i s c u s s i o n  of  s p e c i f i c  problems,  a l l  o f  t h e  

payload  e q u a t i o n s  a r e  s o l v e d  once i n  t h i s  c h a p t e r  and t h e  r e s u l t a n t  

n e c e s s a r y  c o n d i t i o n s  a p p l i e d  w i t h o u t  r e f e r e n c e  t o  t h e  t o t a l  problem 

which i s  impl i ed  by t h o s e  c o n d i t i o n s .  The a n a l y t i c  s t e p s  invo lved  f o r  

t h i s  c h a p t e r  a r e  d e s c r i b e d  i n  Appendix B .  The r e s u l t s  a r e  p r e s e n t e d  

and d i s c u s s e d  i n  t h i s  c h a p t e r .  

2 . 1  The Payload f o r  i d e a l  eng ines  

The f u e l  f low r a t e  f o r  any i d e a l  eng ine  i s  r e l a t e d  t o  t h e  t h r u s t  

p r o v i d e d ,  m a i ,  and t h e  p r o p e l l a n t  e x h a u s t  v e l o c i t y ,  c i ,  by t h e  

c o n s e r v a t i o n  o f  momentum 

which assumes 

F u e l  can  on ly  be expended! For a  g i v e n  d e s i r e d  t h r u s t ,  t h e  f u e l  used  

can  be minimized by maximizing c i .  The two c l a s s e s  of  eng ines  c o n s i d e r e d  

h e r e  l i m i t  ci  by t h e i r  b a s i c  o p e r a t i n g  c h a r a c t e r i s t i c s .  For any eng ine  

t h e  power r e q u i r e d  t o  a c c e l e r a t e  t h e  p r o p e l l a n t  i s  g iven  by 

1 L Power = - m c i  

I n  a  chemica l  e n g i n e ,  t h e  f u e l  p r o v i d e s  bo th  t h e  p r o p u l s i v e  ene rgy  and 

t h e  p r o p e l l a n t .  The a t t a i n a b l e  chamber t empera tu re s  and molecu la r  

we igh t  o f  t h e  p r o p e l l a n t  l i m i t  c i  e x p l i c i t l y .  Ion eng ines  a r e  l i m i t e d  



by t h e  p r o p u l s i v e  power which t h e  independent  power supply  can p r o v i d e .  

For chemica l  eng ines  

and f o r  i o n  eng ines  

1 -, 
i a -  Z (m A) ' 

Power 

S ince  t h e  power p l a n t  s i z e  i s  f i x e d  and independent  o f  t h e  eng ine  f o r  

i o n  p r o p u l s i o n  sys t ems ,  c i  and m a r e  r e l a t e d  and cannot  be independen t ly  

chosen.  A h i g h  e f f i c i e n c y  ( t i )  i s  o b t a i n a b l e  on ly  f o r  a  low f u e l  f low 

r a t e ,  and t h u s  low a c c e l e r a t i o n .  I n  o r d e r  t o  g e t  t h i s  h i g h  e f f i c i e n c y ,  

t h e  t h r u s t  must be a t  a  low l e v e l ,  a p p l i e d  f o r  a  l ong  t ime o f  f l i g h t .  

The a c c e l e r a t i o n  from chemical  engines  i s  l i m i t e d  o n l y  by t h e  mass f low 

r a t e .  With r e s p e c t  t o  o r b i t a l  t r a n s f e r  t i m e s ,  t h e  t h r u s t  can be h igh  

enough t o  be  c o n s i d e r e d  a s  impu l s ive .  Thus t h e  a n a l y s i s  i s  f o r  t h e  

combinat ion of  con t inuous  w i t h  impuls ive  c o n t r o l l e r s .  

Only two c l a s s e s  o f  engines  a r e  c o n s i d e r e d ,  b u t  f o r  a n a l y t i c  e a s e ,  

t h r e e  eng ines  a r e  assumed. The f i r s t  eng ine  (A1) o p e r a t e s  impu l s ive ly  

w i t h  an e x h a u s t  v e l o c i t y  c .  Although i t  can  be used  a t  any t ime du r ing  

t h e  f l i g h t  e x c e p t  t h e  f i n a l  t ime ,  i t  i s  op t ima l  t o  use  i t  on ly  a t  t h e  

i n i t i a l  t ime f o r  most t r a n s f e r s .  The second eng ine  (A_&) o p e r a t e s  

c o n t i n u o u s l y  d u r i n g  t h e  e n t i r e  mi s s ion .  The power i s  assumed p ropor -  

t i o n a l  t o  t h e  mass o f  t h e  power supp ly ,  m . 
P 

1 Power = m 
P  

The s i z e  o f  m remains t o  be chosen t o  op t imize  t h e  pay load .  A s  
P  

d e s c r i b e d  i n  C h a p t e r 1  , it may be d e s i r a b l e  t o  s ave  a  p o r t i o n  o r  a l l  o f  

t h e  power s u p p l y ,  and drop  t h e  r e s t  a t  t h e  f i n a l  t ime .  The t h i r d  eng ine  

( A j ) i s u s e d  a f t e r  any of  t h e  power supply  i s  dropped.  I t  has  c h a r a c t e r -  

i s t i c s  i d e n t i c a l  t o  t h o s e  of  t h e  f i r s t  eng ine .  The s e p a r a t i o n  of  



A and A is for notational convenience and the reason will become -1 -3 

clear later in the derivation. 

Appendix B combines all expressions for the various engines to 

form a total mass flow differential equation. From these the mass at 

the final time (the payload) is found to be 

where 

me = 
the desired final power plant mass 

m = L1(K1 - L1) = the optimum power plant mass 
P 

The notation A,2 is used to denote A,T A,, the square of the magnitude 

of the vector acceleration. It is noted that J1, K1, and L1 are the 

final values of the solutions to the differential equations 



with the initial conditions 

such that L(t) > 0 .  The positive root of L(t) is always used. These 

differential equations for J, K, and L are used in later sections to 

define J1, K1, and L1, in the expressions for mT, which is to be 

maximized. 

Before proceeding to the complete optimization problem, it is 

interesting to note the limits of pure high or pure low thrust. The 

resultant cost function which could be used if only one class of 

engines were used is presented. For pure low thrust we have the con- 

dit i.ons 

For pure high thrust, only the first engine needs to be used since it 

is identical to the third. Thus 



for the pure high thrust. 

The payloads for these limits follows easily. For the high thrust 

Maximizing this expression for the payload is clearly equivalent to 

minimizing the integral 

which is a sum of velocity changes since it is used impulsively. 

For the pure low thrust 

Minimizing the integral 



is clearly equivalent to maximizing m,, regardless of me. 

Although payload maximization is the goal of most trajectory 

optimizations, the problem is generally stated as a fuel minimization. 

In the combination, however, due to the interplay of the two modes, 

the problem must be explicitly stated as a payload maximization. We 

can also anticipate greater difficulty in solving the problem due to 

the interplay of the square root (for L1) and the exponentials (in J1 

and K1). 

2.2 Necessary conditions for transfers in an arbitrary gravitational - 
field. 

The necessary conditions for the maximization of payload for 

transfers in an arbitrary position dependent gravitational field are 

derived in Appendix B. The general optimal problem is stated and the 

results discussed in this section. Using the payload differential 

equations of the previous section, the complete optimal control prob- 

lem for transfers in a position dependent gravitational field is 

given below. The payload as given by 

with 

m = L1 (K1 - L1) P 

is to be maximized subject to the differential equation constraints 

2 = - - R ( 5 )  + A_1 + A_&+ (2.10) 



with the boundary conditions on the differential equations given by 

The parameters xo, sf, go, gf, a, C, me and tf completely specify the 
desired transfer. The state vector, 5, is the position vector of the 

spacecraft for these differential equations. The accelerations A are 

chosen to maximize the Hamiltonian 

where the costate, (t), satisfies the differential equation 



The boundary conditions on Xare free since they are completely 

specified for 5. For this state differential equation, the costate, 

71, is cPassically cailed the "primer vector" and has some properties - 
of interest. The primer, often identified as 2 ( A  - here), and its first 

two derivatives are continuous when any impulsive control is used, 

since the differential equation for A is affected only by 5 (which 

also is continuous across an impulse), 

The optimal accelerations which maximize H are 

where 



I f  - x  is  a v e c t o r  of n  s t a t e  v a r i a b l e s ,  X w i l l  a l s o  be a  v e c t o r  of  n  

v a r i a b l e s .  The 2  n  d i f f e r e n t i a l  equa t ions  i n  5 and have t h e  2 n  

boundary cond i t ions  c o n s i s t i n g  of  xo and xf. The low t h r u s t  a c c e l e r -  

a t i o n  i s  e x p l i c i t l y  r e l a t e d  t o  A. Although t h e  magnitude of t h e  

impulsive c o n t r o l s  A1 and kg a r e  no t  e x p l i c i t l y  g iven ,  they a r e  

c o n s t r a i n e d  i m p l i c i t l y  by the  c o n d i t i o n  on t h e  primer a t  t h e  t imes of  

the  impulses.  I f  the  primer i s  l e s s  than t h e  th resho ld ,  t h e  impulse 

e x p l i c i t l y  has a  zero  magnitude. Thus t h e  d i f f e r e n t i a l  equa t ions  have 

t h e  c o r r e c t  number of boundary c o n d i t i o n s  and t h e r e  i s  an equa t ion  

which i m p l i c i t l y  s p e c i f i e s  t h e  magnitude of each impulse.  F u r t h e r ,  the  

primer can never be g r e a t e r  than  t h e  a p p r o p r i a t e  t h r e s h o l d  on an 

optimal t r a j e c t o r y ,  o r  more impulses would be l e a s t  l o c a l l y  op t ima l .  

For t h e  pure  low t h r u s t  problem, i f  t h e  i n t e g r a l  of equa t ion  

(2.9) is  minimized, the  term equ iva len t  t o  Q(t )  = 1. The boundary 

c o n d i t i o n s  on - X a r e  chosen so  t h a t  AR i s  adequate t o  accomplish t h e  

d e s i r e d  t r a n s f e r .  Pure low t h r u s t  i s  t h e  opt imal  l i m i t  f o r  t h e  mixed 

t h r u s t  problem when ti1 and 6 3  a r e  always l a r g e r  than I i ( t )  1 .  The 

s c a l i n g  of  the  Q( t )  i s  then incorpora ted  i n  t h e  i n i t i a l  cond i t ions  

on x. 
For a  pure  h igh t h r u s t  t r a n s f e r ,  i f  t h e  i n t e g r a l  of equa t ion  

(2 .8)  is  minimized, the  equ iva len t  t h r e s h o l d s  

and the  boundary cond i t ions  on I x I  a r e  chosen such t h a t  



at the times of all impulses and is less than 1 for all other times. 

Mixed thrust transfers become pure high thrust when the low thrust and 

its cost, L1 go to zero (me must be zero or some low thrust will be 

used). It is shown in Appendix B that this limit occurs at a disconti- 

nuity in the equations for this formulation of the payload. Numerically 

those difficulties can be avoided by specifying a small, but non-zero 

me. 1Vhareas pure low thrust is an easy extension from the mixed thrust, 

pure high thrust evolves from the mixed thrust at a discontinuity. 

When the combination of engines is being used, will still carry 

a necessary scaling for the low thrust phase, but it must also match, 

or remain below a threshold. The threshold for the combination, instead 

of being constant, is an increasing function of time. The final thresh- 

old, d3, can be lower than 61(tf) if a part of the optimum power 

supply is dropped. With such a decrease in mass, the high thrust engine 

is, of course, more efficient. As the low thrust engine burns its fuel, 

its efficiency (ci) can be higher for the same acceleration. This 

increased efficiency of the low thrust is represented by the increasing 

threshold 61 (t) . 
There are some special cases which reflect the nature of the final 

threshold. When me = 0 

the initial and final thresholds are equal. In the other extreme if 

me 2 m 
P 

there is no change in the threshold at the final time. Thus for inter- 

mediate values of me 



This change i n  t h e  th resho ld  and t h e  d i f f e r e n c e  i n  t h e  manner J1 e n t e r s  

t h e  payload express ions  a r e  t h e  reasons  A_3 i s  considered d i f f e r e n t  

from A1, a l though they might p h y s i c a l l y  r e p r e s e n t  t h e  same eng ine .  

A s  long a s  me < m an i n c r e a s e  i n  me on ly  r a i s e s  the  f i n a l  
P ' 

t h r e s h o l d .  This w i l l  d iminish  t h e  f i n a l  impulse,  s i n c e  i t  is  then  l e s s  

e f f i c i e n t .  I f  t h e r e  i s  no f i n a l  impulse,  t h e  only e f f e c t  w i l l  be an 

i n c r e a s e  i n  t h e  payload equal  t o  t h e  i n c r e a s e  i n  m e .  However i f  me 2 

m an i n c r e a s e  i n  me a l s o  i n c r e a s e s  t h e  e f f i c i e n c y  of the  low t h r u s t  
P  

phase.  Both t h e  i n i t i a l  and t h e  f i n a l  impulses w i l l  d iminish  due t o  

t h e  inc reased  low t h r u s t  e f f i c i e n c y .  There w i l l  a l s o  be an i n c r e a s e  

i n  payload,  b u t  now i t  w i l l  be l e s s  than t h e  i n c r e a s e  i n  m e .  

For i n c r e a s i n g  t imes of f l i g h t ,  L1 w i l l  become smal le r  a s  t h e  

low t h r u s t  i s  o p e r a t i n g  a t  a  lower a c c e l e r a t i o n  (higher  e f f i c i e n c y ) .  

Not only w i l l  t h e  payload i n c r e a s e ,  bu t  both  t h e  i n i t i a l  and f i n a l  

t h r e s h o l d s  w i l l  i n c r e a s e .  This i s  b e s t  seen by observing t h a t  f o r  

m = O  e  

1 6 ( t )  = 6 3 = c m T  1 0  

The t h r e s h o l d  i n c r e a s e  i s  p r o p o r t i o n a l  t o  t h e  i n c r e a s e  i n  payload.  

Both t h e  i n i t i a l  and f i n a l  impulse w i l l  d iminish  i n  s i z e .  For non- 

zero  m f i l ( t )  w i l l  i nc rease  a t  a  lower r a t e  and reach a  s m a l l e r  v a l u e ,  e  ' 
2 s i n c e  t h e  time varying p o r t i o n  of ti1 i s  L ( t ) .  Although both  impulses 

w i l l  s t i l l  be used l e s s ,  the  i n c r e a s e  i n  6 3  w i l l  be l e s s  than t h e  i n -  

c rease  i n  and the  f i n a l  impulse w i l l  diminish l e s s  than the  i n i t i a l  

impulse. 

Thus t h e r e  a r e  two aspec t s  of t h i s  formulat ion which f a v o r  the  

low t h r u s t :  an inc rease  i n  e i t h e r  m e ,  o r  the  time of f l i g h t .  A s  i s  



shown h e r e ,  t h e  e f f e c t  of  t h e  two on t h e  r e l a t i v e  s i z e s  o f  t h e  i n i t i a l  

and f i n a l  impulses  i s  d i f f e r e n t .  These g e n e r a l  o b s e r v a t i o n s  a r e  v e r i -  

f i e d  i n  t h e  a p p l i c a t i o n  of t h e s e  e q u a t i o n s  t o  s p e c i f i c  problems.  

2 . 3  A conven ien t  change of  v a r i a b l e s  - 
C e r t a i n  c o n s t a n t s  of  motion have evo lved  i n  t h e  c l a s s i c a l  s t u d y  

of  t r a n s f e r s  between o r b i t s  i n  a  c e n t r a l  i n v e r s e  s q u a r e  g r a v i t a t i o n a l  

f i e l d .  For  t h e  v e r y  s m a l l  a c c e l e r a t i o n s  o f  a  low t h r u s t  p h a s e ,  t h e s e  

pa rame te r s  va ry  s lowly  enough t o  pe rmi t  a d d i t i o n a l  s i m p l i f i c a t i o n s .  

The p r e v i o u s l y  s t a t e d  op t ima l  c o n t r o l  problem i s  imp l i ed  i n  t o t a l ,  

e x c e p t  f o r  t h e  s t a t e  d i f f e r e n t i a l  e q u a t i o n s .  Th i s  new s t a t e  cou ld  be 

a  v e c t o r  made up o f  o r b i t a l  e l emen t s .  The a p p r o p r i a t e  n e c e s s a r y  con- 

d i t i o n s  f o r  t h e  op t ima l  c o n t r o l s ,  &, a r e  p r e s e n t e d  w i t h o u t  t h e  d e r i -  

v a t i o n  which would c l o s e l y  p a r a l l e l  t h a t  o f  t h e  p r e v i o u s  s e c t i o n .  The 

d i f f e r e n t  s t a t e  f o r m u l a t i o n  i s  used  i n  o r d e r  t o  t a k e  advantage  o f  t h e  

c l a s s i c a l  n o t a t i o n  f o r  t h e  o r b i t a l  t r a n s f e r s  c o n s i d e r e d  i n  f u t u r e  

c h a p t e r s .  These e q u a t i o n s  s imply  r e p r e s e n t  a  r e s t r i c t i o n  on t h e  admis- 

s i b l e  g r a v i t a t i o n a l  f i e l d  and t h e n  a  n o n l i n e a r  change i n  v a r i a b l e s .  

A s  such  t h e y  do n o t  change t h e  n a t u r e  of t h e  op t ima l  s o l u t i o n .  

For  t h e  o p t i m i z a t i o n  o f  t h e  payload ,  m T ,  f o r  t h e  s t a t e  d i f f e r e n -  

t i a l  e q u a t i o n  

t h e  Hamil tonian  i s  

where 

x  i s  a  v e c t o r  o f  o r b i t a l  e l emen t s  - 



B(x,t) is a matrix function of the state 1~ and time. - 
Note that the state, 5,  and the costate, &, are different for this 

formulation than for the previous section. However the accelerations, 

A, - are the same. The present costate obeys the differential equation 

a B 
where care must be taken with the third order tensor notation for -= 

ax 
Identifying the coefficient of the acceleration vector in the 

Hamiltonian we see that the primer* for this problem is 

Although the costate is not constant during an impulse, B will also 
vary such that the primer p and its first two derivatives are still 

continuous across any impulse in the control. Having made this observa- 

tion, the optimal controls are specified the same as before, having 

properly adjusted the nomenclature. This should be the case since this 

new formulation only represents a change of variables. The Hamiltonian 

is maximized, as before, by the controls 

~~awden" uses this expression for the primer in discussing a problem 
similar to the formulation of Chapter 4 .  



with Q and the thresholds 6 the same as before. 





Chapter  3 

TRANSFERS IN A POSITION INDEPENDENT GRAVITATIONAL FIELD 

The g e n e r a l  r e s u l t s  o f  Chapter  2 a r e  a p p l i e d  t o  problems w i t h  

two c l a s s e s  o f  e x p r e s s i o n s  f o r  t h e  g r a v i t a t i o n a l  a c c e l e r a t i o n  E(5). 

Problems w i t h  g(5) = 0 a r e  cons ide red  f i r s t ,  a l t hough ,  a s  shown below, 

t h e s e  r e s u l t s  a r e  a p p l i c a b l e  t o  problems w i t h  E(5) = g = c o n s t a n t ,  

Chapter  4 c o n s i d e r s  a  second form f o r  R ( x ) .  - Since  t h e  s t a t e  d i f f e r e n t i a l  

e q u a t i o n  f o r  t h i s  problem i s  independent  o f  t h e  s t a t e ,  t h e  pr imer  d i f -  

f e r e n t i a l  e q u a t i o n  w i l l  a l s o  be independent  o f  t h e  s t a t e .  The p r i m e r ,  

and then  t h e  s t a t e  d i f f e r e n t i a l  e q u a t i o n s  can be e a s i l y  i n t e g r a t e d  

du r ing  t h e  low t h r u s t  phase .  An i t e r a t i o n  may be r e q u i r e d  t o  de t e rmine  

t h e  boundary c o n d i t i o n s  on t h e  p r i m e r ,  S ince  t h e  v e c t o r  d i r e c t i o n  o f  

any h igh  t h r u s t  impulses  a r e  s p e c i f i e d  by t h e  p r imer ,  only  t h e  magni- 

t u d e s  o f  t h e  impulses remain t o  be chosen .  I f  t h e  d e s i r e d  power p l a n t  

mass, m e ,  i s  sma l l  enough, t h e r e  can  be on ly  i n i t i a l  and f i n a l  impu l ses .  

This  may a l s o  be t r u e  f o r  a l l  t r a n s f e r s  i n  f i e l d  f r e e  space .  A f t e r  t h e  

assumption t h a t  on ly  i n i t i a l  and f i n a l  impulses  may be used ,  t h e  g e n e r a l  

t r a n s f e r  i s  a n a l y t i c a l l y  so lved  a s  f a r  a s  p o s s i b l e  and t h e  r e s u l t s  

a p p l i e d  t o  t h e  s imp le r  problem o f  a  change i n  p o s i t i o n  w i t h  no change 

i n  v e l o c i t y .  F i n a l l y  t h e  problem f o r  a  change i n  v e l o c i t y ,  w i t h  t h e  

f i n a l  p o s i t i o n  uncons t r a ined ,  i s  s o l v e d .  

The most g e n e r a l  t r a n s f e r  i n  a  p o s i t i o n  independent  g r a v i t a t i o n a l  

f i e l d  i s  r e p r e s e n t e d  by t h e  s t a t e  d i f f e r e n t i a l  e q u a t i o n  

w i t h  t h e  boundary c o n d i t i o n s  



The components AX and A x  of the final conditions represent the effect 

of the control accelerations. The equivalent problem for changes in 

those variables in field free space can be used without loss of gener- 

ality. For notational convenience, the A's are dropped for the re- 

maining discussion. Use 

where 

s = the dimensionless vector change in position - 

V = the dimensionless vector change in velocity - 

tf 
T = = the dimensionless time of flight ( 3 . 3 )  

and as before a and c are the parameters which define the low and high 

thrust propulsion systems. 

3.1 General Transfers in field free space - 
A complete statement of the optimal control problem is given for 

the maximization of payload using the combination of propulsion modes 

for an arbitarary, fixed time transfer in field free space. The results 

of Chapter 2 are applied to yield a set of necessary conditions. 



Assuming that only initial and final impulses are possible, the low 

thrust equations of motion can be integrated. The results of the inte- 

gration are summarized and the resultant payload expressions for a 

change in position with me = 0 are given. For the maximization of the 

payload 

where 

governed by the differential equations 

subject to the boundary conditions 



the Hamiltonian 

must be maximized by the choice of the primer, X, and the controls, &. 

The primer must satisfy the differential equation 

and the optimal controls are 

where Q(t) , (t) , and 6 3  are given in Chapter 2. If there are no 

intermediate impulses, Q(t) = Q1, and we can compare I&& (t) I with the 

thresholds 



i f m  < m  
e -  l' 

t o  v e r i f y  the  l o c a l  o p t i m a l i t y  of  no in te rmedia te  impulses.  Since I I ~ ,  

and 6B a r e  r e l a t e d  t o  the  o r i g i n a l  v a r i a b l e s  by t h e  same Q ( t ) ,  we 

can use Q1 without l o s s  of informat ion.  

The magnitude of 1 i s  of p a r t i c u l a r  importance s i n c e  i t  must be 

equal  t o  a th resho ld  a t  the  time of any impulse and l e s s  than t h e  

t h r e s h o l d  dur ing the  remainder of  the  t r a n s f e r .  A p o s s i b l e  s o l u t i o n  f o r  

t h e  primer d i f f e r e n t i a l  equat ion i s  

where a and b_ a r e  cons tan t  v e c t o r s  which remain t o  be chosen. The 

square  of 

can only have a  minimum s i n c e  the  f i r s t  d e r i v a t i v e  wi th  r e s p e c t  t o  t ime 



has only one p o s s i b l e  zero and t h e  second d e r i v a t i v e  

2 i s  p o s i t i v e  a t  t h a t  ze ro ,  Thus X can have a  maximum only  a t  t h e  i n i -  

t i a l  and f i n a l  t imes .  I f  me = 0, s i n c e  (0) = ti3 and ( t ) ~ 6 ~  (0) , 
t h e r e  can never  be an in te rmedia te  impulse.  As me i n c r e a s e s ,  6 3  i n -  

c r e a s e s .  An ex tens ion  of the  previous  l o g i c  i n d i c a t e s  t h a t  i f  me i s  

smal l  enough, & 3  w i l l  s t i l l  be small  enough s o  t h a t  l h ( t ) l  < S l ( t )  

and t h e r e  w i l l  be no in te rmedia te  impulses.  I t  i s  be l i eved  t h a t  t h i s  

conclus ion w i l l  be t r u e  i n  g e n e r a l ,  but  i t  has no t  been proven a s  y e t .  

I f ,  by assumption,  only i n i t i a l  and f i n a l  impulses a r e  a l lowed,  

the  low t h r u s t  equa t ions  can be a n a l y t i c a l l y  i n t e g r a t e d  and t h e  

problem solved except  f o r  the  s p e c i f i c a t i o n  of the  magnitudes of t h e  

impulses.  Those s t e p s  a r e  c a r r i e d  ou t  i n  Appendix C .  The maximum pay- 

load i s  

where 

1 
J1 = exp ( -7 v2)  

1 
K1 = exp ( -Z vl)  



and t h e  p o s i t i v e  c o n s t a n t s  u o ,  w o ,  v l ,  and v2  a r e  de termined by t h e  

s imu l t aneous  s o l u t i o n  o f  t h e  f o u r  r e l a t i o n s  

where . 

From t h e  n a t u r e  o f  t h e s e  f o u r  e q u a t i o n s  i t  i s  c l e a r  t h a t  t h e i r  a n a l y t i c  

s o l u t i o n  w i l l ,  i n  g e n e r a l ,  no t  be e a s y .  I f  a  f i n a l  impulse i s  u sed ,  an 

a n a l y t i c  s o l u t i o n  i s  no t  p o s s i b l e  when me # 0  due t o  t h e  e x i s t e n c e  of 

t h e  e x p o n e n t i a l  te rm,  K ~ ~ ,  i n  6 B  (L1/K1 i s  an e x p r e s s i o n  f r e e  o f  K1 ) . 
A n a l y t i c  s o l u t i o n s  w i l l  on ly  be p o s s i b l e  f o r  pu re  h igh  t h r u s t ,  pure 

low t h r u s t ,  o r  mixed t h r u s t  w i t h  me = 0, p l u s  a  few o t h e r  s p e c i a l  c a s e s  

o f  minor impor tance .  

Change i n  p o s i t i o n  

The t r a n s f e r  w i t h  V - = 0 i s  so lved  i n  Appendix C f o r  me = 0.  The 

f o u r  e x p r e s s i o n s  f o r  t h e  payload  and t h e i r  r e g i o n s  o f  use  a r e  g iven  



below. Pure h i g h  t h r u s t  

S m = exp ( - 2  -) 
'K T 

i s  used  i f  T <  - 6 .  Mixed t h r u s t  

m = - exp 
'K T 

i s  used  f o r  6 < T 2 6 ( 1 + 5 T ) 2 .  Pure  low t h r u s t  i s  used  i f  
2 - 

T - 6 (l + ) and h a s  two payload  e x p r e s s i o n s  dependent  upon t h e  s i z e  of 

me : 

i f  me 5 m 
P 

i f m  > m  
e -  P  

where 

I t  i s  n o t  p o s s i b l e  t o  g e t  t h e  a n a l y t i c  s o l u t i o n  f o r  mixed t h r u s t  

t r a n s f e r s  f o r  a  non-zero  m e .  

Genera l  t r a n s f e r s  i n  f i e l d  f r e e  space  have a complete a n a l y t i c  

s o l u t i o n  on ly  i f  me = 0. Otherwise t h e  matching o f  w i t h  t h e  

t h r e s h o l d s ,  and €iB, must be done n u m e r i c a l l y .  S ince  r e t e n t i o n  o f  

a p a r t ,  o r  a l l ,  of t h e  power supply  i s  o f  p a r t i c u l a r  i n t e r e s t ,  s t u d y  

o f  problems which r e q u i r e  a  numer ica l  s o l u t i o n  w i l l  be d e f e r r e d  u n t i l  

more i n t e r e s t i n g  t r a n s f e r s  a r e  cons ide red .  



3 . 2  A change i n  v e l o c i t y  i n  f i e l d  f r e e  space  
P 

I f  t h e  f i n a l  p o s i t i o n  i s  n o t  s p e c i f i e d ,  i n t e r m e d i a t e  o r  f i n a l  

impulses  can never  i n c r e a s e  t h e  pay load .  There i s  n o t  a  problem i n  

matching t h e  f i n a l  t h r e s h o l d ,  6 B ,  f o r  non-zero  m Thus a  more complete e  ' 

a n a l y t i c  s o l u t i o n  i s  p o s s i b l e .  However i f  me 2 m 6A can n o t  be 
P ' 

matched a n a l y t i c a l l y .  A l l  c a s e s  excep t  t h i s  one have an a n a l y t i c  e x -  

p r e s s i o n  f o r  t h e  payload .  The c o o r d i n a t e s  f o r  t h i s  problem can be 

chosen s o  t h a t  v e c t o r  n o t a t i o n  can be dropped,  s i n c e  a l l  v e l o c i t i e s  and 

a c c e l e r a t i a n s  w i l l  be a long  t h e  same c o o r d i n a t e .  We wish  t o  maximize 

t h e  pay load ,  m n ,  s u b j e c t  t o  t h e  p r e v i o u s  d i f f e r e n t i a l  e q u a t i o n s  f o r  

J ,  K ,  and L and a l s o  

w i t h  t h e  boundary c o n d i t i o n s  

I .  

x (0 )  = 0 and ; ( t f )  = c V 

and by assumtion  V>O. The Hamil tonian  

i s  maximized i f  X s a t i s f i e s  t h e  d i f f e r e n t i a l  equa t ion  

and t h e  op t ima l  c o n t r o l s  



a r e  u s e d ,  where Q ,  b A ,  and 6B a r e  g iven  e a r l i e r .  

~f i ~ & l  i s  e q u a l  t o  sA a t  t h e  i n i t i a l  t i m e ,  i t  can neve r  b e  e q u a l  t o  

6A(t) '  6* u n l e s s  Ak = L1 = 0.  F u r t h e r ,  1 ~ ~ 1  c an  o n l y  be e q u a l  t o  6B i f  

me = 0.  I n  t h a t  c a s e ,  a  f i n a l  impulse has  t h e  same e f f e c t  upon t h e  

pay load  a s  an i n i t i a l  impulse .  Thus f o r  t h e  mixed t h r u s t  p roblem,  i n t e r -  

med ia t e  impu l se s  a r e  neve r  o p t i m a l ,  and no approximat ion  o r  compromise 

i s  made by a l l owing  o n l y  i n i t i a l  impulses  f o r  t h i s  problem. The pu re  

h i g h  t h r u s t  problem (AR = 0) has  a  unique v a l u e  f o r  t h e  p a y l o a d ,  even 

though t h e  op t ima l  c o n t r o l  i s  n o t  un ique .  An i n i t i a l  impulse produces  

t h i s  o p t i m a l  pay load .  For a  change i n  v e l o c i t y  i n  f i e l d  f r e e  s p a c e ,  

i n t e r m e d i a t e  o r  f i n a l  impulses  can neve r  i n c r e a s e  t h e  pay load ,  i f  

i n i t i a l  impu l se s  a r e  a l lowed.  

The d e r i v a t i o n s  of t h e  f i v e  a p p r o p r i a t e  payload  e x p r e s s i o n s  a r e  

i n  Appendix C .  There i s  one e x p r e s s i o n  f o r  t h e  pu re  h igh  t h r u s t  p a y l o a d ,  

and two e x p r e s s i o n s  f o r  bo th  mixed t h r u s t  and pu re  low t h r u s t ,  depending 

upon t h e  r e l a t i v e  s i z e s  of  me and m Table  3 . 1  g i v e s  t h e  o p t i m a l  
P ' 

e x p r e s s i o n s  f o r  mT a long  w i t h  t h e  r e g i o n s  o f  a p p l i c a b i l i t y  based  upon 

T ,  m e ,  and V. F igu re  3 . 1  shows t h e  pay load  a s  a  f u n c t i o n  o f  T f o r  me = 

.05 ( 5 %  o f  t h e  i n i t i a l  mass) .  S ince  t h e  p u r e  h i g h  t h r u s t  i s  a p p l i e d  i m -  

p u l s i v e l y ,  i t s  payload  i s  n o t  a  f u n c t i o n  of  T. However, t h e  pay load  f o r  

t h e  pu re  low t h r u s t  t r a n s f e r  i n c r e a s e s  w i t h  T ,  s i n c e  t h e  r e q u i r e d  

a c c e l e r a t i o n  i s  lower .  The mixed t h r u s t  pay load  i s  l a r g e r  t han  e i t h e r  



of the others. Note an improvement in payload even for times of flight 

for which the low thrust is not competitive (T( 3.) Figure 3.2 

is a composite plot of the payload for different values of me. Similar 

results are obtained for other changes in velocity. 

Some conclusions can be drawn about general mixed thrust transfers 

from the results obtained in this chapter. If the low thrust differ- 

ential equations can be analytically integrated, the problem of mixed 

thrust transfers can be reduced to the relatively simple determination 

of the magnitude and timing of any impulses. Except for me = 0, and 

certain other special cases, the mixed thrust problem can not have a 

complete analytic solution due to the existence of transcendental 

functions in the necessary conditions. The largest improvement of the 

combination over the pure high thrust is for larger T and me. The 

largest improvement over pure low thrust is for shorter T and the 

largest improvement over either is for intermediate T when the two 

modes are competitive. 





T = Dimensionless time of flight 

Figure 3.1 Payload vs. T for a change in velocity 

in field free space (me = .05 )  

T = Dimensionless time of flight 

Figure 3.2 Payload vs. T for a change in velocity 

in field free space (variable me) 



Chapter  4 

NECESSARY CONDITIONS FOR OPTIMAL TRANSFERS 

BETWEEN COPLANAR COAXIAL ELLIPTIC ORBITS 

The n a t u r e  of  mixed t h r u s t  t r a n s f e r s  between cop lana r  c o a x i a l  

e l l i p s e s  i s  approached by i n v e s t i g a t i n g  t h e  s e p a r a t e  p r o p e r t i e s  of  p u r e  

h i g h  and p u r e  lorv t h r u s t  t r a n s f e r s .  Some s p e c i a l  c l a s s e s  of  pu re  low 

t h r u s t  t r a n s f e r s  a r e  d i s c u s s e d  t o  enhance t h e  unde r s t and ing  o f  t h e  com- 

b i n a t i o n .  For each  c l a s s ,  optimum t r a n s f e r s  and payloads  a r e  a n a l y -  

t i c a l l y  o b t a i n e d .  The c h a r a c t e r i s t i c s  which c o n t r i b u t e  t o  t h e  combina- 

t i o n  a r e  d i s c u s s e d .  The mixed t h r u s t  problem does  no t  have an a n a l y t i c  

s o l u t i o n  due t o  t h e  i n t e r p l a y  o f  t r a n s c e n d e n t a l  f u n c t i o n s .  The comple te  

n e c e s s a r y  c o n d i t i o n s  a s  d e r i v e d  i n  Appendix a r e  p r e s e n t e d  and d i s c u s s e d .  

A s e t  of s i x  pa rame te r s  which cou ld  d e s c r i b e  a  g e n e r a l  t h r e e  

d imensional  o r b i t  i n  a  c e n t r a l  i n v e r s e  squa re  g r a v i t a t i o n a l  f i e l d  a r e  

t h e  s i z e ,  shape ,  and o r i e n t a t i o n  ( t h r e e  Eu le r  a n g l e s )  of  t h e  o r b i t ,  

a long  w i t h  t h e  p o s i t i o n  on t h e  o r b i t .  Of t h e s e  s i x  p a r a m e t e r s ,  t h i s  

c l a s s  r e p r e s e n t s  a  change i n  on ly  two, t h e  s i z e  and shape o f  t h e  o r b i t .  

O f  p a r t i c u l a r  importance i s  t h e  f a c t  t h a t  op t ima l  t h ree -d imens iona l  

t r a n s f e r s  which o n l y  change t h e s e  two pa rame te r s  do n o t  a f f e c t  t h e  

Eu le r  a n g l e s .  Rendezvous, which s p e c i f i e s  t h e  p o s i t i o n  on t h e  o r b i t ,  

i s  a n o t h e r  c l a s s  of  t r a n s f e r s  n o t  cons ide red  h e r e .  

Some p r a c t i c a l  assumptions a r e  employed which c o n s t r a i n  t h e  t r a n s -  

f e r s  and l e n d  t h e  a n a l y s i s  t o  s i m p l i f i c a t i o n .  The g r a v i t a t i o n a l  a t t r a c -  

t i o n  i s  assumed t o  be much s t r o n g e r  (by a  f a c t o r  of  100) t h a n  t h e  low 

t h r u s t  a c c e l e r a t i o n .  Thus d u r i n g  t h e  low t h r u s t  phase of a  t r a n s f e r ,  

t h e  o r b i t a l  p a r a m e t e r s ,  which would be c o n s t a n t  f o r  no c o n t r o l ,  v a r y  

s lowly .  The t r a n s f e r s  w i l l  be a  slow s p i r a l  over  many o r b i t a l  p e r i o d s .  

Typ ica l  i o n  eng ines  a r e  assumed t o  have a  t h r u s t  on t h e  o r d e r  of  l o s 4  

g ' s .  The g r a v i t a t i o n a l  a t t r a c t i o n  i s  100 t imes  l a r g e r  t han  t h a t  f o r  



transfers in earth orbit out to about 10 earth radii. Within this 

constraint imposed by the low thrust, pure high thrust transfers have 

a particularly easy solution. 

Implicit in the assumption of a long low-thrust spiral over many 

orbits is the further assumption that half an orbital period is a 

negligible interval. The fixed time of flight for this problem formu- 

lation will be applied only to the low thrust phase. Initial or final 

impulses can occur at any time during the one orbital period before 

or after the low thrust phase. This makes these initial and final 

high thrust phases the equivalent of open time of flight transfers. 

For such transfers, impulses must be applied only at maxima of the 

primer. Otherwise, the primer would be larger than the threshold, 

which cannot occur on an optimal trajectory. It is shown in Appendix 

D that the primer for this class of transfers can have maxima only at 

the apses of the orbit. Thus optimal impulses can only occur at the 

apses. 

Pure high thrust transfers have two impulses applied at opposite 

apses of a coasting orbit and pure low thrust transfers are a slow 

spiral over many orbital periods. However the form of the combination 

is not clear. Any impulses must be at an apse, but the number and 

timing during the transfer of these impulses must be determined, along 

with the parameters which define the intermediate low thrust phases. 

The timing of the impulses are assumed for this chapter and verified 

in the numerical analysis described in the next chapter. Two initial 

impulses are assumed at opposite apses of a coasting orbit prior to a 

single low thrust phase. After part of the low thrust power supply is 

dropped at the end of the transfer, another impulse is allowed. No 

intermediate impulses are allowed in this formulation, although the 

necessary conditions to verify the local optimality of this assumption 

are presented. 



In order to analyze the problem, a convenient set of differential 

equations is necessary which applies both to high and low thrust 

accelerations. A classical set of perturbation equations is used. 

The properties of the corresponding set of costate differential 

equations are discussed in Appendix D, before using them in the solu- 

tion for the mixed thrust necessary conditions. The pure high and 

low thrust solutions discussed in this chapter closely follow from 

the high and low thrust phases of the mixed thrust solution presented 

in Appendix D. 

4.1 The Differential Equations of Motion - 

Classical perturbation differential equations as defined by 
3 Edelbaum and others can be used to define the dynamics for the problem 

described in the previous section. These equations describe the 

change in orbital elements due to a small enough perturbing accelera- 

tion. In this case we will specify that acceleration in order to 

accomplish a desired transfer. Although these equations cannot be used 

for general impulsive accelerations, they are appropriate for any 

impulse which does not change the eccentric anomaly, E, of the orbit. 

As will be shown, this special case is indeed optimal, and these 

equations apply. The optimal control for the low thrust and necessary 

conditions for the high thrust are both related to the primer vector 

p. This vector will be specified for this problem and its properties 

discussed to complete the statement of the basic differential equations 

of motion for this problem. 

Classical perturbation equations use semimajor axis, a, and 

eccentricity, e. For convenience of notation in further sections 0 

as defined by 

cos 2 0  = e 



will be used instead of eccentricity. The derivatives of 8 and e are 

simply related. The accelerations used are coordinatized for 

convenience in a rotating frame such that 

where AR is in the radial direction from the center of the force field 

and AT is perpendicular to it, in the plane of motion. 

For the state vector 

and the general acceleration A, - the state differential equation is given 

by 

where 

- 2 a esin E 1 
2 e+e cos E-2 cos E sin 2 0  sin E 1 

(4.2) 
and the differential equation for E during any one orbit is 

dE - 
E - 1-e cos E (4.3) 



which gives 

E-e sin E = 6 (t-to) 
if a and e are sufficiently constant. The transfers being considered 

have only a small low-thrust acceleration, or an impulse which does not 

change E. Thus a and e change slowly enough, or E is not changed, 

by assumption. 

The optimal control for this state is related to the primer vector 

given by 

for this state differential equation. The time history of X will be - 

discussed in future sections. In terms of the true anomaly, f, which 

is related to E by 

E tan f 2 = dE tan - 2 

the primer can be written as 

where - 

= 
I2 
cos 20 1 

- 
D = - h2tan 20 sin 20 



The primer, like the acceleration, is coordinatized in a rotating frame. 

Taking this into account, the derivative of the primer is 

D e sin f r (Ire cos f) 3 / 2  

D 

vl+e cos f 
_I 

For this derivative, all parameters except f are assumed to be constant 

or very slowly varying. 

The costates A1, and X2 must then be chosen so that the desired 

transfer is accomplished and any necessary conditions are satisfied. 

The following analysis assumes C and D are slowly varying or constant 

and is not concerned with their value. Only the general properties of 

the primer on an optimal trajectory are desired. 

Impulses are optimally applied when the magnitude of the primer 

is a maximum and equal to a threshold 6. Also at an impulse, the 

primer and its first two derivatives are continuous. Assuming C and 

D are approximately constant over the period of any one orbit, the 

magnitude of the primer 

where 

x = e cos f 

can be a maximum only when its first derivative is zero 

(-e sin i) 



and the second derivative is negative, 

D2 ( - X )  + .---a 6 D 2  (-e sin f) 2 

( l+x )  

One possible maximum occurs when the bracketed term equals zero. This 

solution is 

f = cos -1 1 (. xo) 

For this solution, the second derivative is always positive and there- 

fore it represents a minimum. The existence of the inverse cosine is 

thus of no interest here. 

Two other possible solutions occur when 

sin f = 0 

The second derivative can be negative for these solutions and they 

thus represent possible maxima. Note that E and f are identical at 

these possible maxima 

When the eccentricity, e, is zero, the primer has a constant magnitude 

since all of its time derivatives are zero. 



For convenience of notation define a signum function T such that 

r + l  at apoapse 

Note that T = - cos f = - cos E at the possible maxima of the primer. 

Thus 

with 

when the magnitude of the primer is possibly a maximum. 

If p is a maximum and equal to a threshold 6, an impulse is opti- 

mal at that apse. The impulse is applied in the direction of the 

primer which in this case is tangential. Since the orbital velocity 

is also tangential at an apse, such an optimal impulse only changes 

the altitude of the other apse and not E. Thus the earlier differential 

equations are indeed applicable for optimal impulses at an apse. A 

further necessary condition across an impulse is that the primer and 

its first two derivatives are continuous. In this notation, p and p' 

will be constant. For an impulse at an apse, C and D will change in 

a predictable manner dependent only upon T and the change in e. 

Having established the importance and characteristics of the primer 

for this class of transfers, it is now possible to determine the 



nature of optimal low, high and mixed thrust transfers. Much of the 

algebraic gaps of the following sections are covered in the complete 

derivations of Appendix D. 

4.2 Pure low thrust transfers 

The complete solution for optimal low thrust transfers between 

coplanar coaxial ellipses is presented in this section. Basic to the 

problem is the assumption on the magnitude of the control acceleration, 

AR. Ak is so small that the secular change in the elements a and 0 

during any one orbit is small. The transfers will thus spiral over 

a long time of flight from the initial to the final orbit. Since 

the periodic changes in a and 0 are also small and of little interest, 

their variation can be eliminated by an averaging process. The dif- 

ferential equation for the remaining secular variations in elements 

can then be solved. The general time history of the state, primer 

and payload for this class of transfers is given and discussed, 

especially in its relationship to the mixed thrust transfers. 

The classical optimization problem for the maximization of 

payload during a low thrust transfer maximizes the integral 

For the differential equation 

~ ( 0 )  - = Xo 

; = B(&,t)AR - 

&(tf) = &f 

the Hamiltonian as given by 



carries the full information about the dynamics on the optimum trajec- 

tory and maximization of H maximizes the integral given above. ha is 
chosen to maximize H by 

for this problem the low thrust acceleration is identically equal to 

the primer vector. Thus we have 

The dynamics for this problem are given by the canonical differen- 

tial equations 

where care must be taken with the third order tensor notation in the 

term aB/ax. Since the initial and final conditions on x are specified, - - - 

the boundary conditions on X must be chosen to accomplish the desired 
transfer. 

These equations contain the complicating periodic variations in 

elements which are assumed to be small. Taking the time average of H 

over the period of any arbitrary orbit will eliminate all such periodic 

terms in H and also in the differential equations implied by H. Let 

H1 be the averaged Hamiltonian obtained by 



1-e cos E) dE 

As shown in Appendix D, the result of this operation is 

The parameters - X and 5 were assumed constant during any one orbit and 

they thus now represent the slow secular variation in X and 5. From 

general optimal control theory we also know that 

Thus on a low thrust trajectory, the averaged Hamiltonian is a constant. 

Thus we also know that the average of the acceleration squared is con- 

stant. 

The differential equations for the secular variation in parameters 

can be obtained, as before, but now from the averaged Hamiltonian 



As shown in Appendix D, for the similar low thrust phase of a mixed 

thrust transfer, the equations can be completely integrated analytically. 

The results are given for the transfer between 

in terms of the parameters 

6 2  = 
= dimensionless gravitational constant 

T = = dilnensionless time of flight 
01 C 

The maximum payload is 



with 

During the thrusting phase 

2 
[I - (1-y cos $1 c] + [y sin B ;.Tts-= tf tf 

~ ( t )  = e2 + 4; sin-' [sin ) y 

D(t) ) C (t) (l+e cos f )  + l+e cos 

g(t) = 

C(t) e sin f 

where 

t (1-y cos $) - h - 

sin 29 

& y sin ) tan 20 sin 29 D(t) = - 
f 

(4.15) 

From the differential equation in 9, it is clear that 9 progresses 

monotonically from its initial to its final value. The semi-major 

axis, a, will progress monotonically from its initial to its final 

value only if the change in eccentricity is small enough. Otherwise 

there can be a maximum value reached for a. The second derivative of 



a is always negative. 

Of course, the earlier generalizations about the maxima of the 

primer on any one orbit still hold. But, unfortunately, the time 

history of these maxima of the primer is too complex for any generali- 

zations which might lead to the understanding of the mixed thrust 

transfer. Although it seldom forms a part of a mixed thrust transfer, 

there is one special case which has a significant simplification. 

When the initial and final eccentricities are equal, $ = 0, and the 

eccentricity is constant during the entire transfer. For this case, 

a(t) simplifies to 

The average orbital velocity, , progresses linearly from its 

initial to its final level. 

Also for this case, the coefficients which define the primer are 

constant during the entire transfer 

Since D is zero, the primer has a minimum at apoapse (f = 8) and a 

maximum only at periapse (f = 0 ) .  Also this maximum is constant from 

orbit to orbit, since C is constant. Further, when the initial and 

final orbits are circular, the radial component of the primer is 

always zero. Thus the primer is a constant in the tangential direction. 

Unfortunately these results are not generally applicable since the 

magnitude of the primer is very sensitive to small changes in 8 and $. 



4 . 3  Pure  h i g h  t h r u s t  t r a n s f e r s  -- 

Within  t h e  c o n s t r a i n t s  imposed by t h e  low t h r u s t  assumpt ions ,  

op t ima l  p u r e  h i g h  t h r u s t  t r a n s f e r s  have an e a s y  s o l u t i o n  which i s  w e l l  

documented. The l e v e l  o f  t h e  low t h r u s t  w i t h  r e s p e c t  t o  g r a v i t y  r e -  

s t r i c t s  t h e  t r a n s f e r s  t o  a  maximum change i n  r a d i u s  of  10 .  Fu r the r ,  

s i n c e  t h e  low t h r u s t  t r a n s f e r  i s  a  s low s p i r a l ,  t h e  t ime of one o r b i t  

i s  a  sma l l  f r a c t i o n  o f  t h e  t r a n s f e r  t imes  be ing  cons ide red .  Thus 

h i g h  t h r u s t  t r a n s f e r s  can be approached a s  i f  t h e  t ime o f  f l i g h t  were 

f r e e .  For t h i s  c a s e  a  Hohmann t r a n s f e r  i s  o p t i m a l ,  w i t h  two impulses  

a p p l i e d  a t  t h e  o p p o s i t e  apses  o f  a  c o a s t i n g  o r b i t .  For s h o r t  t ime 

rendezvous ,  o r  changes i n  r a d i u s  R f / R O  > 11 .94 ,  t h r e e  o r  more impulses  

can be o p t i m a l ,  b u t  t h e s e  c a s e s  a r e  exc luded by t h e  low t h r u s t  assump- 

t i o n s .  

Pure h i g h  t h r u s t  t r a n s f e r s  w i l l  be ana lyzed  from an op t ima l  c o n t r o l  

p o i n t  o f  view. The c o n d i t i o n s  on t h e  p r imer  which c o n t r i b u t  t o  t h e  

o p t i m a l i t y  o f  t h e  t r a n s f e r  w i l l  be d i s c u s s e d ,  biany of  t h e  c o n d i t i o n s  

d e s c r i b e d  a r e  a l s o  a p p r o p r i a t e  f o r  mixed t h r u s t  t r a n s f e r s .  The t i m i n g  

( a t  an apse )  and d i r e c t i o n  ( t a n g e n t i a l )  o f  any impulses  i s  d e f i n e d  by 

t h e  d i s c u s s i o n  of  t h e  pr imer  i n  a  p r e v i o u s  s e c t i o n .  With t h i s  know- 

l e d g e ,  h i g h  t h r u s t  t r a n s f e r s  can be analyzed  from t h e  b a s i s  of  v e l o c i t y  

changes.  That  approach i s  taken  i n  Appendix D f o r  t he  d i s c u s s i o n  of  

t h e  h i g h  t h r u s t  phase  o f  a  mixed t h r u s t  t r a n s f e r .  This  s e c t i o n  w i l l  

u se  t h e  p r imer  d i r e c t l y  t o  de termine  t h e  op t ima l  h igh  t h r u s t  t r a n s f e r  

between c o p l a n a r  c o a x i a l  o r b i t s .  The p r i m e r ,  payload and op t ima l  

t r a j e c t o r y  w i l l  a l l  be d e f i n e d .  

The c l a s s i c a l  payload  maximizat ion problem f o r  h igh  t h r u s t  t r a n s -  

f e r s  maximizes t h e  i n t e g r a l  



for the state differential equation 

;( = B(x,t)jll - - -  

The Hamiltonian as given by 

is maximized by the choice 

if- l a r l  = 1 

if < 1 

Note that for this transfer 

Since A1 is optimally impulsive at the maxima of p and zero for the 

rest of the transfer, x and 11 are constant except at impulses. In the 

nomenclature of this chapter C and D which specify the primer are also 

constant except at an impulse. As shown in Chapter 2, the primer and 

its first two derivatives are continuous at an impulse. These conditions 

specify the changes in C and D after an impulse, in terms of C and D 

before the impulse. 

For the transfer between the orbits 

the optimum transfer has two impulses applied at the opposite apses of 



the  c o a s t i n g  o r b i t  s p e c i f i e d  by al and e l .  T h e  c o a s t  o r b i t  w i l l  be 

b e t w e e n  t h e  g r e a t e r  apoapse and t h e  p e r i a p s e  o f  t h e  o t h e r  o r b i t .  F o r  

T o  such t h a t  

i f  a 2 ( l + e 2 )  > a O ( l + e O )  

T o  = {+'  
- 1 i f  a 2 ( l + e 2 )  < a O ( l + e O )  

t h e  r a d i i  a t  each i m p u l s e  i s  given by 

Rl = a O ( l - T o e 0 )  = a l ( l - T o e l )  

R2  = a 2 ( 1 + T o e 2 )  = a l ( l + T o e l )  

F r o m  r h i s  c o n d i t i o n ,  the  p a r a m e t e r s  o f  t h e  c o a s t i n g  o r b i t  a r e  

A  necessary c o n d i t i o n  f o r  t h e  a p p l i c a t i o n  of i m p u l s e s  i s  t h a t  t h e  

p r i m e r  b e  e q u a l  t o  1 a t  each i m p u l s e  and l e s s  than  1 a t  a l l  o t h e r  

t i m e s .  A s  s h o w n  i n  s e c t i o n  4 . 1 ,  t h e  p r i m e r  can on ly  have m a x i m a  a t  

an apse.  

F o r  t h i s  t r a n s f e r ,  t h e  p r i m e r  a t  each i m p u l s e  i s  



equal to one. C1 and Dl, chosen to satisfy this set of conditions, are 

- 2R1R2 
- 

(R,+R,) 

The value of the primer at the opposite apse before the first impulse 

and at the opposite apse after the second impulse must each be less than 

1 for this transfer to be optimal. As shown in section 4.1, p' as given 

by equation 4.10 and the primer p must be continuous across each impulse 

These two equations can be used to find the appropriate C's and D's on 

the initial and final orbits, from which the primer at the opposite 

apses can be determined. After some algebra, the primer at the oppo- 

site apse before the first impulse is 

and at the opposite apse after the final impulse, the primer is 

where 

For this transfer to be optimal, p- and p; must both be less than 1. 0 



The payload for this transfer 

mT = K1 2 

where 

is (locally) maximized when the previously described necessary conditions 

are satisfied). 

4.4 Necessary conditions for mixed thrust transfers 

Pure high and pure low thrust transfers have complete analytic 

solutions within the assumptions of this chapter. Only the necessary 

conditions are derivable for the combination of engines. Appendix D 

contains the analytic derivations of these conditions, Those results 

are presented and discussed in this section, 

During the low thrust phase, the scaling on the primer is still 

chosen so that A is adequate to accomplish that portion of the transfer. 
However the threshold which indicates the time to use the high thrust 

is no long simply given, nor is the scaling of the primer arbitrary for 

the high thrust phase, Since the matching of the primer with the thresh- 

olds involves square roots, exponentials, and trigonometric functions, 

it is not possible to analytically satisfy the necessary conditions. 

The numerical techniques used for that purpose are given in the next 

chapter. 

The necessary conditions presented in this section are for a specific 

assumed mode for a mixed thrust transfer. There are two high thrust 

phases separated by a single low thrust phase. The first high thrust 

phase allows two impulses at opposite apses of a coasting orbit. Since 



h a l f  an  o r b i t a l  p e r i o d  i s  assumed t o  be a  v e r y  s h o r t  t ime ,  t h e  e f f e c t  

of  t h e  low t h r u s t ,  i f  used  d u r i n g  t h i s  i n t e r v a l ,  i s  i gnored .  A t  t h e  

f i n a l  t ime ,  ~ n l y  one impulse i s  al lowed.  The low t h r u s t  eng ine  i s  

used  t o  s p i r a l  between t h e  two h igh  t h r u s t  phases .  F u r t h e r  n e c e s s a r y  

c o n d i t i o n s  w i l l  be  d e s c r i b e d  which v e r i f y  t h e  l o c a l  o p t i m a l i t y  o f  

t h e s e  assumpt ions .  

F igu re  4 .1  shows two op t ima l  t r a j e c t o r i e s  f o r  which two impulses  

a r e  used .  The p e r t i n e n t  o r b i t s  a r e  l a b e l e d  by t h e  O i  f o r  t h a t  o r b i t .  

The numbers a t  t h e  a p s e s  i n d i c a t e  t h e  s u b s c r i p t  on t h e  p r imer  f o r  

t h a t  apse .  Below t h e  f i g u r e  i s  a t a b l e  o f  t h e  v a l u e s  f o r  t h e  p r imer  

and t h e  t h r e s h o l d s  a f t e r  t h e y  have been normal ized  by a conven ien t  

c o n s t a n t .  For t h e  f i r s t  t r a n s f e r ,  s i n c e  o n l y  one i n i t i a l  impulse i s  

used  

and / p l l  and l p ; /  a r e  l e s s  t h a n  ~ 5 ~ ( 0 ) .  There i s  no " f i r s t "  impulse .  

S ince  t h e r e  i s  a  f i n a l  impulse 

and lp f l  and a r e  b o t h  l e s s  t h a n  63.  For t h e  second t r a n s f e r  

Also / p o l  and l p ; l  a r e  l e s s  t h a n  61(0) ,  and I P f  / i s  l e s s  t han  63 .  

During t h e  low t h r u s t  phase f o r  bo th  t r a n s f e r s  



Figure  4 . 1  The apses of i n t e r e s t  on optimal t r a j e c t o r i e s  

Table 4 . 1  The primer and th resho ld  a t  the  apses of i n t e r e s t  
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During the low thrust phase, for 

1 2 6 2  t 
~ ( t )  = - - JF ((1-y cos $1 - h -1 

Q p c  = tf 

the primer is 

The thresholds are given by 

m = L1(K1-L1) 
P 

and as derived in Appendix D 
$3 

Jl = exp [ -S3 F; (Gf - Gg)l 



Thus the necessary conditions for the maximization of payload are 

and 

/pol < 61 

The first three equations must be satisfied by the choice of el, €I2, 

and €I3. The final set of inequalities must be satisfied to verify the 

optimality of the assumptions on the timing of the impulses. 

If all of these necessary conditions are satisfied, the trajectory 

will (locally) maximize the payload. A method for the numerical 

determination of the 0's which satisfy these conditions is presented 

in the next chapter, along with the numerical results, 



Chapter 5 

NUMERICALLY DETERMINED OPTIMAL COPLANAR COAXIAL TRANSERS 

The necessary conditions derived in Chapter 4 provide a verification 

of the (local) optimality of a transfer, but do not lead to a convenient 

numerical iteration. The payload derived in Chapter 4 as a function of 

the three free parameters 

and its first two derivatives with respect to the - 9's as presented in 

Appendix D are used in the numerical iteration. As discussed in 

Chapter 4, the iteration assumes that two initial impulses (at the 

opposite apses of a coasting orbit) and one final impulse can be used. 

Additional necessary conditions were presented which can be used to 

numerically verify the local optimality of these assumptions. The 

timing of the impulses was picked using the knowledge of optimal pure 

high, and pure low thrust transfers and an assumption on the manner of 

their combination. The numerical properties of the maximum payload are 

discussed before describing the numerical techniques used to arrive at 

that optimum. For examples, transfers are considered between seven 

sets of initial and final orbits. The payload improvements and optimum 

trajectories are discussed. The assumed timing of the impulses was 

verified as being locally optimal for all transfers which were studied. 

5.1 Numerical definition of the maximum payload - 
The payload expression of Chapter 4 must be numerically maximized 

by a choice of the free parameters 8.  Before describing the numerical 



iteration used to reach that optimum value, the numerical properties 

of the maximum are presented. The payload expression 

is explicitly expressed as a function of the free paramters using 

equation 4.16 for J1, 4.17 for K1, and 4.18 for L1. It is noted that 

J1 is a function of 8 3  and that K1 is a function only of and 0 2 .  

If 

is an arbitrary small variation from the optimum 2, the Taylor series 

for the payload about the optimum is 

where all derivatives are evaluated at the optimum value for 8. The 

series converges if all derivatives are finite and 62 is small enough 

so that the higher order derivatives can be neglected. The explicit 

expressions for the first derivative vector 

am. - 1.2; 
g = x -  - 

am. ae, 



and t h e  second d e r i v a t i v e  mat r ix  

a r e  g iven i n  Appendix D .  For t h i s  - 0 t o  ( l o c a l l y )  maximize t h e  payload,  

i t  i s  necessa ry  t h a t  each component of t h e  term 

be equal  t o  ze ro .  Otherwise a smal l  v a r i a t i o n  

T f o r  k smal l  enough, could i n c r e a s e  the  payload.  I f  - g 6 0  - i s  ze ro ,  i t  i s  

s u f f i c i e n t  t h a t  the  c o n d i t i o n  

be s a t i s f i e d  a t  a  maximum f o r  any non-zero choice  of the  vec to r  68. 

when t h i s  ine 'quali ty i s  s a t i s f i e d ,  i t  i s  s a i d  t h a t  5 i s  nega t ive  d e f i n i t e  

and i s  o f t e n  i n d i c a t e d  by 

G < O  - 

From t h e  d e f i n i t i o n  i n  Appendix D of the  signums Si ,  we must have 

sl(O1-Oo) > 0 o r  = e 0  (no f i r s t  impulse) 

~ ~ ( 0 ~ - 0 ~ )  > 0 - o r e 2  = (no second impulse) 

~ ~ ( 0 ~ - 0 ~ )  > 0 o r e 3  = e f  (no f i n a l  impulse) 



These conditions constrain the possible choices of 68. For example if - 
e3 = ef, 603 must satisfy S 68 < 0 from the above relationship. But 3 3 

if S3g3 > 0, an allowed 6e3 cannot increase the payload. Thus 6e3 = 0. 

Unless 6e1 = 0, there are problems if we must have SO2 = 601. The 

constraint O1 = e2 really implies a change in the mode of the transfer. 

Since the change in mode is covered by other initial conditions, the 

iteration is terminated for this mode if el # 00, e2 = el, and S2g2 < 0. 

Otherwise if one of the 8's is specified as indicated above on the 

right hand side, the corresponding 68 must be zero, unless of course, 

an allowed 68 would satisfy the left hand inequality. Thus the condi- 

T tion g 68 = 0 can be satisfied either by - - 

gl = 0 - or 6e1 = 0 (Slgl < 0 and el = 00) 

82 = 0 - or 6e2 = 68 1 2 2  (S g < 0 and O 2  = el) 

In appendix D, it is shown that if 

the primer at the time of the second impulse is equal to its threshold. 

Thus, either the primer is equal to its threshold, or there is no 

impulse. The equivalent condition applies if g3 = 0. However, the 

primer at the time of the first impulse is equal to its threshold only 

if 

and 



Otherwise, if S2g2 < 0, O2 = el and a variation in el requires an 

equal variation in e2. Thus for computational purposes two different 

modes are assumed, The first mode allows two initial and one final 

impulse (no artificial constraints). The second mode does not allow 

a first impulse, Only one initial and one final impulse are allowed. 

Often each of these modes possesses at least one local maximum, and 

the optimum transfer is determined by a comparison of the respective 

payloads. 

As is'typical with most numerical iterations, the initial condition 

is important. As there are two assumed modes of operation, there are 

two different sets of initial conditions used for the iterations. 

These were determined to work successfully by some initial trials. 

When both modes have local maxima, some artificial devices are often 

necessary to force the iteration for one away from the other solution. 

Thus when only one initial impulse is desired, a second impulse is not 

allowed. The iteration then proceeds to the maximum. The initial 

condition used for this mode is 

el = O0 (fixed) 

and either 

if the trajectory is going from an inner to an outer orbit or 



if going inbound. The variable OH corresponds to the eccentricity of 

the pure high thrust coasting orbit. For transfers between elliptic 

orbits, the initial condition of a pure low thrust transfer 

is also useful. This often leads to a third local maximum. 

When two initial impulses are desired, the simpler transfer pre- 

sented in Appendix D provides an excellent initial condition. If 8* 

corresponds to the eccentricity of the coasting orbit between the two 

impulses of this simpler transfer, the initial conditions for the total 

transfer are given by 

T The constraint 603 = 0 is used until g 68 - = 0 for a choice of el and 

e2. Then the constraint is removed and the iteration proceeds. Even 

when this mode is optimal, the iteration tends to diverge to the mode 

of one initial and one final impulse if the constraint is not used in 

the initial portion of the iteration. 

5.2 The numerical iteration - 
The numerical properties of the optimum payload expression have 

been defined. Now a logic to choose among the possible iteration steps 

is presented. The details of each of these iteration steps are in 

Appendix E. Earlier a Taylor series of the payload was expressed 



about t h e  optimum v a l u e .  For t h e  i t e r a t i o n  a  Taylor s e r i e s  expressed 

about t h e  p r e s e n t  v a l u e  of - 9 i s  u s e f u l .  Thus 

where now t h e  d e r i v a t i v e s  a r e  eva lua ted  a t  the  p r e s e n t  va lue  of 8. 

Three of t h e  i t e r a t i o n  s t e p s  evolve  from t h i s  formulat ion.  The g r a d i e n t  

s t e p  

w i l l  always i n c r e a s e  t h e  payload ( i f  t h e  s t e p  i s  smal l  enough). The 

s c a l e  f a c t o r  of .1 was found t o  provide  s a t i s f a c t o r y  performance much 

of t h e  t ime.  A Newton-Raphson (N-R) s t e p  

w i l l  f i n d  the  maximum of t h e  payload i f  t h e  func t ion  i s  q u a d r a t i c .  Near 

t h e  maximum, w i t h  both  - 8 and 6 0  - s m a l l ,  t he  payload express ion  i s  s u f -  

f i c i e n t l y  q u a d r a t i c  t h a t  t h i s  s t e p  goes r i g h t  t o  the  maximum. I f  t h e  

s t e p  

has been t a k e n ,  and found t o  be unaccep tab le ,  s t e p  s i z e  c o n t r o l  i s  

exe rc i sed .  The unsuccessful  s t e p  i s  d i s c a r d e d ,  and a  smal le r  s t e p  i n  

t h e  same d i r e c t i o n  is  taken.  The p a r a b o l i c  s t e p  

where k ,  a s  de r ived  i n  Appendix E ,  i s  



uses  t h e  informat ion ob ta ined  from t h e  unsuccess fu l  s t e p  t o  e s t i m a t e  

the  second d e r i v a t i v e  i n  t h e  d i r e c t i o n  d .  I f  t h e  f i r s t  p a r a b o l i c  s t e p  - 
s i z e  r e d u c t i o n  i s  s t i l l  no t  a c c e p t a b l e ,  k  i s  computed aga in  and ano the r  

s m a l l e r  s t e p  i s  taken.  The previous  s t e p  4 can be t h e  r e s u l t  of  a  

g r a d i e n t ,  N - R ,  o r  p a r a b o l i c  s t e p .  In  o rde r  t o  ensure  s u c c e s s f u l  p rogress  

t o  t h e  optimum, k  i s  c o n s t r a i n e d  t o  t h e  va lues  

For some of t h e  t r a n s f e r s ,  an adverse  reg ion  was encountered f o r  
Y 

which t h e  previous  methods d i d  no t  provide  s a t i s f a c t o r y  convergence. 

Such reg ions  a r e  b e s t  desc r ibed  a s  a  r i d g e .  The payload i n c r e a s e s  

on ly  s l i g h t l y  i n  one (vec to r )  d i r e c t i o n ,  bu t  dec reases  d r a s t i c a l l y  

i f  a  s t e p  i s  taken i n  o t h e r  d i r e c t i o n s .  The a c c e l e r a t i o n  s t e p  

i s  used,  where A 6 ,  - a  v e c t o r  i n  t h e  d i r e c t i o n  of the  r i d g e ,  i s  de f ined  

i n  Appendix E .  I f  such a  s t e p  i n c r e a s e s  the  payload,  ano the r  l a r g e r  

s t e p  i s  taken i n  t h e  same d i r e c t i o n .  The s t e p  s i z e  i s  s o  inc reased  

and more s t e p s  taken i n  the  d i r e c t i o n  A9 - a s  long a s  t h e  payload i n -  

c r e a s e s .  

Each of these  s t e p s  a r e  u s e f u l  a t  va r ious  t imes i n  the  s e a r c h  f o r  

the  op t ima l  payload.  The fol lowing l o g i c  used i n  t h e  numerical  i t e r a -  

t i o n  was a r r i v e d  upon a f t e r  observing the  p rogress  of many t r i a l  

i t e r a t i o n s .  The g r a d i e n t  s t e p  i s  used i f  



G is not negative definite - 

The N-R step is used if 

gL < .03 and - G < 0 

A step is acceptable if the payload increases 

or if the payload does not decrease too much - and the gradient does not 

double back upon itself. These conditions are 

and 

Use the acceleration step if on a ridge as defined in Appendix E. The 

iteration is successfully terminated if 

Most iterations converged in less than ten steps if the mode being 

tested is optimal. In a typical iteration, there will be three or four 

gradient steps, possibly with parabolic step control. Then the itera- 

tion terminates with one or two N-R steps. The acceleration step was 



only used when two initial impulses were being sought and the usual 

result was a change in the mode to drop the second impulse. 

5.3 Some optimal coplanar coaxial transfers - 
The examples presented are the result of successful numerical 

iterations. They were chosen because they display the most interesting 

properties of the many cases tried. Since it is impossible to test 

all combinations of change in eccentricity and semi-major axis, the 

conclusions reached by the study of these transfers do not exclude 

other possibilities. However, no significant deviations from the 

results presented here have been observed among the many other cases 

which have been tried. For these numerical iterations, a mode para- 

meter was used to specify the allowed timing and direction of the 

impulses along with the appropriate iteration initial conditions. 

Thus the signums Si and Ti were specified for each iteration and not 
2 allowed to change. Additional input parameters used were BZ, p , eo, 

ef, T, and me. BZ is the gravitational constant on the inner most 

orbit. B0 is computed from BZ, depending upon the direction of the 

transfer. All examples use the same value BZ = 1.8 which corresponds 

to the constant in a low earth orbit with a high thrust exhaust velo- 

city of approximately 7500 ft./sec. Other transfers have been tried 

for the range 1. 2 BZ 2 2. Transfers for the value of BZ chosen best 

demonstrate the widest variety of modes of transfer. The average 

computational time required per transfer was 150 milliseconds on an 

IBM 360/65 computer. A detailed description of the results of the 

first example is given, followed by brief comments about the differences 

and similarities of the other examples. 

The variations in transfers are affected by a number of factors. 

It was observed in Chapter 2 that increasing T and me favor the low 

thrust in different ways. In addition to increasing the payload, a 

large T increases the final threshold, 63, less than the initial 

threshold, As T increases, the final impulses will either be 

favored or decrease less than any initial 

80 



impulses. Increasing me will principally increase the final threshold, 

thereby favoring initial impulses. In addition to these factors, the 

dynamics of orbital transfers enter in. It is observed that the high 

thrust is more effective for changing eccentricity than the low thrust. 

Also the high thrust is often used closer to the center of attraction 

where the gravity is stronger and the low thrust is less effective. 

Table 5.1 The examples used 

Transfers between seven pairs of initial and final orbits are 

considered. Table 5.1 lists the combinations considered, and for 

brevity, each will be referred to by its number. The ratio of semi- 

major axes, af/ao, and initial and final eccentricities, eo and ef, 

define the transfer being considered. The payload is given in 

graphical form versus the dimensionless time of flight, T, and for the 

four values me* = 0, .05, .lo, .15. In addition eight representations 

*In the numerical iteration me=.OO1 was used instead of zero. The pay- 

load difference is less than .001 and only a slight change in mode 

.was caused for small T. Otherwise the results are essentially the same. 



of t h e  opt imal  t r a j e c t o r i e s  a r e  g iven f o r  each example. Four t r a j e c -  

t o r i e s  ( f o r  t h e  f o u r  va lues  of me) a r e  given f o r  the  f i x e d  t ime of 

f l i g h t  i n  t h e  t a b l e .  These a r e  i n d i c a t e d  by a  A on t h e  payload p l o t .  

For f i x e d  m e ,  f o u r  more t r a j e c t o r i e s  a r e  g iven f o r  the  f o u r  va lues  of 

T i n  t h e  t a b l e .  These examples a r e  i n d i c a t e d  by a  e on t h e  payload 

p l o t s .  

A t r a n s f e r  between two coplanar  c i r c u l a r  o r b i t s  w i t h  a  change i n  

r a d i u s  R f / R O - =  4 .  i s  used a s  example 1. The changes i n  payload a r e  

g iven i n  Figure  5 .1  f o r  me = .05.  Since  t h e  t ime of f l i g h t  i s  always 

assumed g r e a t e r  than one o r b i t a l  p e r i o d ,  t h e  h igh t h r u s t  payload i s  

no t  a  f u n c t i o n  of T .  The low t h r u s t  payload i n c r e a s e s  wi th  T and the  

mixed mode payload i s  g r e a t e r  than the  o t h e r s .  Note the  improvement 

i n  payload f o r  the  combination even f o r  t imes of f l i g h t  f o r  which the  

low t h r u s t  mode i s  not  compet i t ive  ( T  ( 4 ) .  Figure  5 . 2  i s  a  composite 

p l o t  of the  payloads f o r  t h e  f o u r  va lues  of m e .  For a l l  o t h e r  examples 

only  t h e  composite p l o t  i s  given.  The improvements over the  pure  h igh 

t h r u s t  payload a r e  g r e a t e s t  f o r  l a r g e r  me and T .  The improvements over  

the  pure  low t h r u s t  payload a r e  g r e a t e s t  f o r  s h o r t  t imes of f l i g h t .  

F igures  5 .3  and 5.4 a r e  r e p r e s e n t a t i o n s  of the  opt imal  t r a j e c t o r i e s  

which would be followed f o r  t h e  i n d i c a t e d  choice  of T and me.  The 

e x a c t  t r a n s f e r s  a r e  not  g iven because t h e  low t h r u s t  phases would be 

a l l  b lack  i f  t h e  a c t u a l  number of o r b i t s  were shown. Also the  smal l  

p e r i o d i c  v a r i a t i o n s  i n  o r b i t a l  elements a r e  no t  r ep resen ted .  These 

p l o t s  a r e  computed us ing  t h e  p o s i t i o n  v e c t o r  
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T =  DIMENSIONLESS T I M E  

F i g u r e  5 . 1 .  P a y l o a d  v s .  r .  f o r i t r a n s f e r  #1 (me = .05) 

-- - r- - 
POWER PLANT MASS 

+ = DIMENSrONLESS T I M E  OF FLIGHT 

F i g u r e  5 . 2  P a y l o a d  v s .  r f o r  t r a n s f e r  #1 ( v a r i a b l e  me) 



which i s  expres sed  i n  n o n - r o t a t i n g  c a r t e s i a n  c o o r d i n a t e s .  During t h e  

i n i t i a l  and f i n a l  o r b i t s ,  and t h e  c o a s t i n g  h a l f  o r b i t  between t h e  

i n i t i a l  impulses ,  a  and 0 a r e  c o n s t a n t .  During t h e  low t h r u s t  s p i r a l ,  

t h e  op t ima l  t ime h i s t o r y  o f  a  and 0 a r e  used  a s  g iven  by e q u a t i o n s  

4.12 and 4.13. E i s  r e l a t e d  t o  t by t h e  s o l u t i o n  of  t h e  t r a n s c e n d e n t a l  

i n t e g r a l  e q u a t i o n  

For t h e  p l o t s ,  t h e  number o f  o r b i t a l  p e r i o d s  shown i s  t h e  s p e c i f i e d  

pa rame te r ,  n .  Thus f o r  t h e  i n t e g r a l  i s  a d j u s t e d  s o  t h a t  

The cho ice  of  n  i n  t h e  p l o t s  b e a r s  no r e l a t i o n s h i p  t o  t h e  t ime of  

f l i g h t .  I t  was chosen s o  t h a t  t h e  s p i r a l  would b e s t  show t h e  v a r i a t i o n  

i n  o r b i t a l  pa rame te r s  f o r  t h a t  t r a n s f e r .  The apse  a t  which impulses  

a r e  a p p l i e d  a r e  numbered acco rd ing  t o  t h e  0 which was changed by t h a t  

impulse .  A f i n a l  impulse i s  always l a b e l e d  a s  # 3 .  Two i n i t i a l  impulses  

a r e  l a b e l e d  #1 and # 2 .  I f  on ly  one i n i t i a l  impulse i s  used ,  i t  i s  

l a b e l e d  # 2  s i n c e  e 2  was found numer i ca l ly  and = e O .  

F igu re  5 . 3  r e p r e s e n t s  f o u r  t r a n s f e r s  f o r  t h e  same power p l a n t  

s i z e ,  me = .05 ,  and t h e  f o u r  d i f f e r e n t  t imes  of  f l i g h t  g iven  i n  Table  

5 . 1 .  The f i r s t  ( T  = . 2 )  has  two i n i t i a l  impulses  fo l lowed by a  s m a l l  

change d u r i n g  t h e  low t h r u s t  s p i r a l .  I t  i s  n e a r l y  pu re  h i g h  t h r u s t .  

The second (T = 3 . 6 )  has  two s m a l l e r  i n i t i a l  impulses  w i t h  a  much l a r g e r  

low t h r u s t  phase .  A s  T i n c r e a s e s ,  t h e  mode changes.  I t  i s  more 



T = 5.0 T = 7 .0  

F i g u r e  5 . 3  Opt imal  t r a j e c t o r i e s  f o r  t r a n s f e r  # l ( v b l .  r ,  me = .05) 



Figu re  5 . 4  Optimal t r a j e c t o r i e s  f o r  t r a n s f e r  # l  ( v b l .  m e ,  T = 3 . 6 )  



efficient to use only one initial impulse and add a final impulse. 

The transfer with two initial impulses still has a local maximum for 

this T, but the payload is smaller. The final transfer is nearly pure 

low thrust with only one small initial impulse. Figure 5.4 shows four 

plots for the same T = 3.6. When no power plant is saved, initial and 

final impulses can be used with equal efficiency relative to the low 

thrust since 61 = 63. For larger me, final impulses must accelerate 

more mass, and thus are not as efficient. Thus the first plot has one 

initial and one final impulse with an intermediate low thrust spiral. 

The remaining transfers have two initial and no final impulses, with 

the low thrust phase increasingly important as me increases. 

The second example is a transfer between the same orbits as the 

first example, but in the opposite direction. The initial orbit is 

the outer circle and the final orbit is the inner circle. The payload 

(Figure 5.5) and optimum transfers are identical to those of example 

1 for the pure high thrust, pure low thrust and mixed thrust for me=O 

only. Although the payload is virtually the same for increasing me, 

T = DIMENSIONLESS T I R E  OF F L I G H T  

Figure 5 . 5  Payload v s .  r f o r  t r a n s f e r  82 



Figure 5 .6  O p t i m a l  t r a j e c t o r i e s  fo r  t r a n s f e r  # 2  ( v b l  me, T = 4 . 2 )  



Figure 5 . 7  Optimal t r a j e c t o r i e s  f o r  t r a n s f e r  # 2  ( v b l  T ,  m e  =.001)  



t h e  t r a n s f e r s  look much d i f f e r e n t .  Figure  5.6 shows four  t r a n s f e r s  

f o r  T = 4 . 2 .  The t r a n s f e r  f o r  me = 0  would be t h e  same, whether going 

i n ,  o r  o u t .  There is  one i n i t i a l  and one f i n a l  impulse. As me ' 

i n c r e a s e s ,  t h e  f i n a l  impulse i s  dropped and t h e  low t h r u s t  accomplishes 

a  l a r g e r  share  of t h e  t r a n s f e r .  The t r a n s f e r  f o r  me = .05 does n o t  

appear t o  use  more low t h r u s t ,  bu t  t h e r e  i s  a  s i g n i f i c a n t  i n c r e a s e  i n  

payload.  With inc reas ing  me i t  is  c l e a r  f o r  t h e  o ther  examples t h a t  

t h e r e  i s  an inc reased  amount of low t h r u s t ,  Figure 5.7 shows t h e  

v a r i a t i o n  i n  . t r a n s f e r s  f o r  inc reas ing  t imes of f l i g h t .  The observa-  

t i o n s  f o r  t h e  f i r s t  example a l s o  apply t o  t h i s  f i g u r e .  

The t h i r d  example is between an i n n e r  c i r c u l a r  o r b i t  and an o u t e r  

o r b i t  w i t h  a  moderate e c c e n t r i c i t y  (e  = . 3 ) .  The modes of t r a n s f e r  

change a s  t h e  dynamics of t h e  optimal c o n t r o l  problem and t h e  t r a n s f e r  

i t s e l f  va ry  i n  importance. The changes i n  mode can be observed by t h e  

change i n  t h e  s lope  of t h e  payload curve i n  Figure 5.8. The most 

n o t i c e a b l e  i n f l e c t i o n s  a r e  f o r  me = 0. and T " 6.8, me = .05 and 

T 2 7.8,  and me = .15 and T 2 2 . 2 .  The changes i n  the  t r a n s f e r s  f o r  

i n c r e a s i n g  me a s  shown i n  Figure 5 . 9  a r e  a s  be fore .  A s  me i n c r e a s e s ,  

f i r s t  t h e  f i n a l  impulse i s  dropped, and then  t h e  second impulse i s  

e 

B 1.0 L.0 S.0 4 . 0  S . 0  8 .0  7.0 b.0 0.0 10.0 11.0 1P.O 

y = DIMENSIONLESS T I M E  OF FLIGHT 

F i g u r e  5 . 8  P a y l o a d  v s .  a f o r  transfer  #3  



m e  = . l o  me = . 1 5  

F i g u r e  5 . 9  Optimal t r a j e c t o r i e s  f o r  t r a n s f e r  # 3  ( v b l  m e ,  T = 3 . 2 )  



T = 7.0 

Figure  5.10 O p t i m a l  t r a j e c t o r i e s  f o r  t r a n s f e r  # 3  (vbl T, m e  = .05) 



dropped. The t r a j e c t o r i e s  f o r  d i f f e r e n t  T ' S  shown i n  Figure  5.10 show 

some dramat ic  changes i n  mode. For s h o r t  t imes of f l i g h t ,  t h e r e  a r e  

the  u s u a l  two i n i t i a l  impulses followed by a low t h r u s t  s p i r a l .  Then 

t h e  second impulse i s  no longer  used and a  smal l  f i n a l  impulse i s  added. 

The f i n a l  impulse has  been dropped f o r  T = 7 .  For T = 8 . ,  the  mode 

changes. One f i n a l  impulse i s  used t o  inc rease  t h e  e c c e n t r i c i t y  t o  i t s  

f i n a l  va lue  a f t e r  an i n i t i a l  low t h r u s t  s p i r a l  a t  low e c c e n t r i c i t y .  

The f o u r t h  example is  t h e  inbound v e r s i o n  of  t h e  t h i r d  example. 

S imi la r  t o  t h e  r e l a t i o n s h i p  between example 1 and 2 ,  t h e  payload and 

t r a n s f e r s  a r e  i d e n t i c a l  f o r  t h e  pure  h igh t h r u s t ,  pure  low t h r u s t ,  and 

mixed t h r u s t  f o r  me = 0. However f o r  l a r g e r  m e ,  t h e r e  is  a  d i f f e r e n c e  

i n  t h e  payload between examples 3 and 4 .  For s m a l l e r  T ,  the  outbound 

t r a n s f e r s  have a  l a r g e r  payload than the  inbound t r a n s f e r s .  Although 

two i n i t i a l  impulses a r e  used f o r  bo th ,  going outbound the  impulses 

occur on t h e  inner  p o r t i o n  of the  t r a n s f e r ,  r a t h e r  than  the  o u t e r  

p o r t i o n .  Thus t h e  low t h r u s t  phase is  more e f f e c t i v e  s i n c e  i t  is  

used i n  t h e  reg ion  of  weaker g r a v i t a t i o n a l  f o r c e .  For l a r g e r  T ,  the 

inbound t r a n s f e r  has  a  h igher  payload s i n c e  the  s i n g l e  impulse which 

me 

0 J--c--.~L-c--c--e---c------ ---AA--+ 

S 1.0 P.0 5 .0  4 .0  5 . 0  6 .0  7.0 0 .0  8 .0  10.0 $1.5 te.0 

T = DIMENSIONLESS TIME OF FLIGHT 

F i g u r e  5 . 1 1  P a y l o a d  v s .  r f o r  t r a n s f e r  #4 



~ i i u r e  5 .12  Optimal t r a j e c t o r i e s  f o r  t r a n s f e r  # 4  ( v b l  m e ,  r = 3 . 8 )  



Figu re  5 .13  Optimal t r a j e c t o r i e s  f o r  t r a n s f e r  #4 ( v b l  T, m e  = 0 )  



changes the eccentricity occurs at the initial, rather than the final 

time. For the larger me, a single impulse has a lower cost at the 

initial time. The variations in the transfer for increasing me shown 

in Figure 5.12 are similar in nature to those of example 2 in Figure 

5.6. The variable T plots shown in Figure 5.13 are similar to those 

of Figure 5.10, but with the roles of initial and final impulses 

reversed. 

To demonstrate the similarity of the results for some other 

transfe-s, the remaining three examples bear a relationship to the 

earlier examples. The fifth example has the same change in eccentricity 

and semi-major axis as the third and fourth examples. However the 

initial eccentricity is different. The pure low thrust payload for 

examples 3, 4, and 5 are essentially the same. The high thrust 

payload is higher for the fifth example. For short times of flight, 

the improvement over the pure high thrust payload is the same for 

examples 3 and 5. However for larger T the improvement over the pure 

low thrust reflects the greater efficiency of the high thrust at the 

n 
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T = DIMENSIONLESS TIME OF FLIGHT 

F i g u r e  5.14 p a y l o a d  v s .  T f o r  t r a n s f e r  # 5  



F i g u r e  5 . 1 5  Opt imal  t r a j e c t o r i e s  f o r  t r a n s f e r  #5 ( v b l  me, -r = 3 . 4 )  



T = 9 . 0  T = 1 0 . 9  

F i g u r e  5 . 1 6  Oot imal  t r a j e c t o r i e s  f o r  t r a n s f e r  X5 ( v b l  T, m e  = . 0 5 )  



higher  e c c e n t r i c i t y .  Figures  5.15 and 5.16 represen t  t h e  optimal 

t r a j e c t o r i e s  f o r  v a r i a b l e  T and v a r i a b l e  me.  Their  v a r i a t i o n s  a r e  

s i m i l a r  t o  those  of example 3. Examples 6  and 7 a r e  s i m i l a r  t o  t h e  

f i r s t  example. They a r e  t r a n s f e r s  between coplanar c i r c u l a r  o r b i t s  

w i t h  d i f f e r e n t  changes i n  r a d i u s .  The r e l a t i v e  improvements i n  payload 

occur a t  d i f f e r e n t  T, b u t  t h e  v a r i a t i o n s  i n  t h e  t r a n s f e r  a r e  q u i t e  

s i m i l a r .  The mode of t r a n s f e r  f o r  t h e  combination of p ropu ls ion  systems 

has  been def ined  by t h e  number and magnitude of the  impulses. The 

improvement i n  payload i s  s u f f i c i e n t  t o  i n d i c a t e  cons idera t ion  of t h e  

combination of propuls ion systems on any t r a n s f e r  f o r  which low t h r u s t  

can be considered.  

T = D ~ M E N S I O N L E S S  TIME OF FLIGHT 
. - 

Figure 5.17 Payload v s  T f o r  transfer #6' 



me = .10  me  = . 15  

F igu re  5 .18  Optimal t r a j e c t o r i e s  f o r  t r a n s f e r  #6 ( v b l  m e ,  T = 3 . 2 )  



Figu re  5 . 1 9  Optimal t r a j e c t o r i e s  f o r  t r a n s f e r  # 6 ( v b l .  r ,  me = 0 )  



r = DIMENSIONLESS TIME OF FLIGHT 

Figure 5 . 2 0  Payload v s .  T f o r  t rans fer  #7 



m e  = .10 me = . 1 5  

F-:sure 5.21 Optimal t r a j e c t o r i e s  f o r  t r a n s f e r  # 7  ( v b l  m e ¶  = 3 e 2 )  



F i g u r e  5 . 2 2  O p t i m a l  t r a j e c t o r i e s  f o r  t r a n s f e r  #7 ( v b l  T ,  m e  = . l o )  



Chapter 6 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

S i g n i f i c a n t  improvements i n  payload have been ob ta ined  f o r  changes 

i n  s p a c e c r a f t  t r a j e c t o r i e s  us ing t h e  opt imal  combination of i d e a l  

v e l o c i t y  and power l i m i t e d  engines .  A payload express ion  was developed 

which cons ide r s  t h e  r e t e n t i o n  of a  p o r t i o n ,  o r  a l l ,  of  t h e  power supply  

used f o r  the  low t h r u s t  propuls ion.  Reta ining t h e  power supply mass, 

me,  r e s u l t s  i n  an improvement i n  payload,  r e g a r d l e s s  of t h e  time of 

f l i g h t .  The improvement i n  payload i s  t y p i c a l l y  g r e a t e r  than 80% of 

me f o r  t imes of f l i g h t  such t h a t  the  two modes a r e  independently com- 

p e t i t i v e .  The opt imal  c o n t r o l  problem f o r  the  combination of engines  

i s  much more complex than t h a t  f o r  e i t h e r  mode used independent ly .  

For t r a n s f e r s  between coplanar  c o a x i a l  e l l i p s e s  i n  a  s t r o n g  g r a v i t a -  

t i o n a l  f i e l d ,  the  dynamics of t h e  t r a n s f e r  have been a n a l y t i c a l l y  

solved.  The r e s u l t a n t  payload express ion  has  been numerical ly  maxi- 

mized by t h e  optimum choice  of t h e  remaining f r e e  parameters  f o r  some 

s p e c i f i c  examples. S imi la r  improvements i n  payload were found f o r  

changes i n  v e l o c i t y  i n  f i e l d  f r e e  space .  Large enough payload improve- 

ments have been obta ined t o  suggest  c o n s i d e r a t i o n  of t h e  combination 

i f  it i s  p o s s i b l e  t o  use a  low t h r u s t  p ropu l s ion  system a t  a l l .  

Some obse rva t ions  made i n  Chapter 2 regarding t h e  v a r i a t i o n  i n  

the  t r a j e c t o r i e s  due t o  v a r i a t i o n s  i n  me and t have been v e r i f i e d  f o r  

the  examples s t u d i e d .  For s h o r t  t imes of f l i g h t ,  T, the  mixed t h r u s t  

payload w i l l  always be g r e a t e r  than the  h igh t h r u s t  payload i f  a  non- 

zero power p l a n t ,  m i s  d e s i r e d .  I f  t i s  very  smal l ,  t he  improvement e  ' 
i s  i n s i g n i f i c a n t  s i n c e  t h e  low t h r u s t ,  which must o p e r a t e  a t  a  low 

a c c e l e r a t i o n  i n  o r d e r  t o  be e f f i c i e n t . ,  does no t  have enough time t o  



a f f e c t  t h e  t r a n s f e r .  However, t h e  improvements i n  payload grow r a p i d l y  

as  T i n c r e a s e s .  For in te rmedia te  T ,  when the  high and low t h r u s t  a r e  

independent ly  compet i t ive ,  the  improvement f o r  the  combination i s  

g r e a t e s t .  Inc reas ing  me w i l l  i n c r e a s e  t h e  payload by 8 0 %  t o  100% of 

the  increment i n  me .  Thus i f  t h e  two modes a r e  compet i t ive ,  and a  

power supply  is  d e s i r e d ,  it i s  added " f ree"  payload i f  t h e  combination 

i s  used.  For moderately l a r g e  T ,  t h e r e  w i l l  s t i l l  be some improvement 

over  pure  low t h r u s t .  But f o r  l a r g e  T ,  t he  low t h r u s t  e f f i c i e n c y  i s  

so  h igh t h a t  h igh t h r u s t  w i l l  b e  used only f o r  t h e  i n i t i a l  i n s e r t i o n  

i n t o  o r b i t .  

The t iming of  the  h igh t h r u s t  impulses d e f i n e  t h e  mode o r  

c h a r a c t e r  of coplanar  coax ia l  t r a n s f e r s .  There were a t  most two 

i n i t i a l  impulses ( a t  the  o p p o s i t e  apses  of a  c o a s t i n g  o r b i t )  and one 

f i n a l  impulse.  Between these  h igh t h r u s t  phases ,  t h e r e  i s  a  low 

t h r u s t  s p i r a l  phase .  Although t r a n s f e r s  w i t h  t h r e e  impulses were 

found, t y p i c a l l y  e i t h e r  two i n i t i a l  and no f i n a l ,  one i n i t i a l  and 

one f i n a l ,  only  one i n i t i a l ,  o r  only  one f i n a l  impulse were used.  The 

numerical  i n i t i a l  cond i t ions  r e f l e c t i n g  t h e s e  d i f f e r e n t  p o s s i b l e  modes 

f r e q u e n t l y  r e s u l t e d  i n  s e v e r a l  l o c a l  maxima. The t iming of t h e  

impulses i s  d i c t a t e d  by the  i n t e r r e l a t i o n s h i p  of t h e  dynamics of  t h e  

t r a n s f e r  i t s e l f  and of the  opt imal  c o n t r o l  problem (as  de f ined  by t h e  

t h r e s h o l d s ,  6 ,  and t h e  p r imer ) .  Usual ly  t h e  t iming of t h e  impulses 

was d i c t a t e d  by t h e  r e l a t i v e  l e v e l  of t h e  t h r e s h o l d ,  whi le  the  improve- 

ments i n  payload were a f f e c t e d  by the  dynamics of the  t r a n s f e r .  

For a  g iven t r a n s f e r  between two o r b i t s ,  the  de te rmina t ion  of the  

t iming of t h e  impulses i s  dominated by t h e  optimal c o n t r o l  parameters  

p ,  61, and 63. These a r e  a f f e c t e d  by t h e  time of f l i g h t ,  T ,  and the  - 

d e s i r e d  power supply  mass, m e .  Due t o  t h e  lower r e q u i r e d  a c c e l e r a t i o n  

l e v e l ,  the  low t h r u s t  c o s t  w i l l  dec rease  f o r  smal l  i n c r e a s e s  i n  T ,  



even a s  t h e  low t h r u s t  phase accomplishes more of the t r a n s f e r .  This 

i s  r e f l e c t e d  i n  t h e  i n c r e a s e  i n  bo th  t h e  i n i t i a l  and f i n a l  t h r e s h o l d s .  

However, s i n c e  the  low t h r u s t  i n t e g r a l ,  L1, i s  s m a l l e r ,  t h e  i n c r e a s e  i n  

f i 3  i s  no t  a s  l a r g e  a s  i n  61. The f i n a l  impulse l o s e s  e f f i c i e n c y  l e s s  

r a p i d l y  than t h e  i n i t i a l  impulses.  These e f f e c t s  a r e  seen i n  t h e  

p l o t s  of  t r a j e c t o r i e s  f o r  v a r i a b l e  T. The mode t y p i c a l l y  changes from 

two i n i t i a l  impulses t o  one i n i t i a l  and one f i n a l  impulse, then t o  

only one i n i t i a l  impulse. Changes i n  t h e  d e s i r e d  power p l a n t  s i z e ,  

m a l s o  have a  l a r g e  e f f e c t  upon t h e  r e l a t i v e  s i z e s  of t h e  impulses.  e  ' 
I f  me i s  s m a l l e r  than  t h e  optimum power p l a n t  mass, m 63 w i l l  i n c r e a s e  

P ' 
much more than  i n c r e a s e s  due t o  t h e  i n c r e a s e  i n  J1 as  the  f i n a l  

impulse d imin i shes ) .  Thus f i n a l  impulses w i l l  d iminish  much more than  

i n i t i a l  impulses.  I f  t h e r e  i s  no f i n a l  impulse,  the  payload i n c r e a s e s  

by t h e  amount of t h e  inc rease  i n  m e ,  and t h e  t r a n s f e r  modes a r e  t h e  

same. However, i f  me i s  g r e a t e r  than  m both  61 and 63 w i l l  i n c r e a s e .  
P ' 

The low t h r u s t  power supply i s  now s p e c i f i e d  a t  a  h igher  l e v e l  than 

the  optimum, and t h e  same a c c e l e r a t i o n  can be achieved by a  lower 

exhaust  v e l o c i t y .  These e f f e c t s  can be seen  i n  the  p l o t s  of t h e  

t r a j e c t o r i e s  f o r  v a r i a b l e  me. F i r s t  t h e  f i n a l  impulse i s  dropped, 

then t h e  i n i t i a l  impulses d iminish  a s  the  low t h r u s t  accomplishes more 

of t h e  t r a n s f e r .  

The dynamics of t h e  t r a n s f e r  have a  l a r g e r  e f f e c t  upon the  payload 

than upon t h e  t iming of t h e  impulses.  Comparing the  payloads f o r  l i k e  

t r a n s f e r s  i t  i s  observed t h a t  h igh t h r u s t  is  more e f f i c i e n t  (h igher  

payload) f o r  use  i n  the  s t r o n g e r  p o r t i o n  of the  g r a v i t a t i o n a l  f i e l d ,  f o r  

changing e c c e n t r i c i t y ,  o r  o p e r a t i o n  a t  h igher  e c c e n t r i c i t y .  The low 

t h r u s t  is  more e f f i c i e n t  a t  lower e c c e n t r i c i t i e s  and i n  the  weaker 

p o r t i o n  of t h e  g r a v i t a t i o n a l  f i e l d .  Also ,  t h e r e  a r e  cases  f o r  which 

t h e  mode changes due t o  t h e  r e l a t i v e  dominance of t h e s e  e f f e c t s .  For 



transfers to a final elliptic orbit at a large T ,  a final impulse is 

used to change the ecentricity, even for moderate me. 

The improvements obtained for this class of transfers are suffi- 

cient to warrant further investigations into the use of the combina- 

tion of propulsion systems. There are basically three areas for 

further study. Within the engine and strong gravity assumptions used 

here, other classes of orbital transfers remain to be studied. Removing 

the assumptions on the strength of the gravitational field would allow 

an extension of this problem formulation to interplanetary transfers. 

Before applying these results to a specific mission, the non-spherical 

character of the earth's gravitational field must be considered and 

the ideal engine assumptions must be dropped. Real engines involve 

the additional masses of the engine, structure and fuel tanks, along 

with non-ideal operating capabilities. 

Insertion of a communications satellite into synchronous orbit is 

an appropriate application of the theory presented here. However, for 

launches from the United States, the inclination of the orbit must also 

be changed. Transfers involving a change in all orbital parameters 

(except position on the orbit) should also be considered. As more 

complicated transfers are tried, the completeness of the solution for 

the low thrust phase is no longer possible. Although analytic 

solutions exist for general low thrust transfers, the boundary condi- 

tions on the costate must be numerically obtained. Also the timing of 

the impulses during the orbit will not be specified for general 

transfers as it is for the class considered here. Within the assump- 

tion of a strong gravitational field, rendezvous is not a particularly 

interesting class of transfers. Over the many orbits of the spiral 

which are required, a small perturbation in each orbit is all that is 

required to achieve rendezvous. Using the combination of propulsion 

modes, similar payload improvements should be possible for these 



o t h e r  c l a s s e s  of t r a n s f e r s .  An i n i t i a l  cho ice  on the  t iming of 

impulses f o r  o t h e r  c l a s s e s  of  t r a n s f e r s  should  be motivated by 

t h e  r e s u l t s  found h e r e .  



Appendix A 

NOTATIONAL CONVENTIONS AND NOMENCLATURE 

The v a r i a b l e s  a r e  d iv ided  i n t o  c a t e g o r i e s  appropr ia te  t o  t h e i r  

a p p l i c a t i o n  f o r  a  d e s c r i p t i o n  of t h e i r  s o l e s .  The n o t a t i o n a l  convent ions  

used a r e  g iven f i r s t ,  fol lowed by t h e  masses, s t a t e  v a r i a b l e s ,  d e f i n i n g  

c o n s t a n t s ,  and t h e  c o n t r o l s .  The equa t ion  number of the  d e f i n i n g  

e q u a t i o n ( s )  o r  t h e  f i r s t  occurence of each v a r i a b l e  i s  g iven i n  

pa ren theses  a f t e r  each d e s c r i p t i o n .  S ince  each chap te r  of d e r i v a t i o n s  

has  a  r e l a t e d  appendix,  many v a r i a b l e s  have two equat ion numbers 

i n d i c a t e d  f o r  the  r e s p e c t i v e  f i r s t  occur rences .  

Nota t iona l  conventions 

The v e c t o r  and o t h e r  n o t a t i o n s  a r e  expla ined us ing x  a s  a  dummy 

v a r i a b l e .  The d i s c u s s i o n  is  concerned w i t h  how any such v a r i a b l e  i s  

t r e a t e d .  

li = underbar ,  t o  i n d i c a t e  t h a t  t h e  v a r i a b l e  is  a  mat r ix .  An 

n  x  1 mat r ix  i s  o f t e n  c a l l e d  a  vec to r  

xT = use  of t h e  t r anspose  of t h e  mat r ix  - 
T x2  = x 5. The n o t a t i o n  f o r  t h e  square  of the  vec to r  magnitude - - 

i s  shor tened 

T 
= + d z  The s c a l a r  magnitude of a  vec to r  

- a - - the  v e c t o r  of f i r s t  d e r i v a t i v e s  wi th  r e s p e c t  t o  each corn: ax 
ponent of 6 

k = over  d o t .  One (two) overdot  i n d i c a t e s  the  f i r s t  (second) 

time d e r i v a t i v e  of t h e  v a r i a b l e  i n  an i n e r t i a l l y  f i x e d  

coord ina te  system. 

Some s u b s c r i p t s  a r e  used which a r e  of genera l  a p p l i c a t i o n  

0 = a t  t h e  i n i t i a l  time of the  t r a n s f e r  

f  = a t  the  f i n a l  time of t h e  t r a n s f e r  



1 = f i n a l  time (only f o r  J1, K1, L1, and Q1) 

Nomenclature 

A l l  masses a r e  d imensionless ,  having been normalized by t h e  i n i t i a l  

mass of t h e  s p a c e c r a f t  

m7T 
= payload.  This i s  the  mass remaining a f t e r  t h e  t r a n s f e r  

i s  completed and any undes i red  power p l a n t  has  been 

dropped (2 .3 ,  B . l l )  

me = t h e  power p l a n t  mass d e s i r e d  a t  the  end of t h e  t r a n s f e r  

( a  s p e c i f i e d  parameter)  

m 
P  

= opt imal  power p l a n t  s i z e  f o r  any t r a n s f e r  (2 .4 ,  B.lO) 

m = f u e l  flow r a t e  (B.6) 

Some i n t e g r a l s  of t h e  c o n t r o l s  a r e  used t o  d e s c r i b e  the  payload 

J ( t )  = t h e  change i n  mass (a  r a t i o )  of the  s p a c e c r a f t  due t o  

any f i n a l  (Ag) - c o n t r o l s  (B.9) 

K(t )  = t h e  change i n  mass (a r a t i o )  of the  s p a c e c r a f t  due t o  

any o t h e r  (A1) h igh t h r u s t  c o n t r o l s  (B.7) 
2 L ( t )  = t h e  i n t e g r a l  of t h e  low t h r u s t  a c c e l e r a t i o n  which d e t e r -  

mines t h e  change i n  mass (B.8) 

By d e f i n i t i o n ,  t h e  f i n a l  va lue  on t h e s e  t h r e e  v a r i a b l e s  i s .  i n d i c a t e d  

by a  s u b s c r i p t  1. 

The c u r r e n t  p o s i t i o n  o r  o r b i t  of a  s p a c e c r a f t  i s  g iven i n  genera l  

by a  s t a t e  v e c t o r  5 which depends upon the  problem s ta tement .  When 

X = t h e  p o s i t i o n  v e c t o r  (2 .10 . ,  3.2) 

R(x) = t h e  a r b i t r a r y  p o s i t i o n  dependent g r a v i t a t i o n a l  a c c e l e r a t i o n  

(2.10) 

g = t h e  g r a v i t a t i o n a l  a c c e l e r a t i o n  i n  p o s i t i o n  independent 

space  (3 .1)  



V = the dimensionless change in velocity (3.2) - 
S - = the dimensionless change in position (3.2) 

When 

X - = a vector of orbital elements (4.1) 

a = semi-major axis of the orbit 

1 e = cos-'e (by definition) 

e = eccentricity of the orbit 

Subscripts,on the orbital elements are given by equations D.7 

e - = the vector of the unspecified 8's (5.1, D.18) 

60  - = the deviation from the optimum, or a step taken trying 

to reach the optimum. The four possible steps are (5.4, 

5.5, 5.6, 5.8) 

g = the gradient vector of the payload (5.2, D. 17) 

G = the second derivative matrix of the payload (5.3, D.21) - 
k = parabolic step sizing parameter (5.7) 

R = a(1-e cos E) = the radius on an orbit 

Two other classical elements are used to indicate the time variation 

f = true anomaly (4.4) 

E = eccentric anomaly (4.3) 

B(x,t)=the matrix of coefficients which relate the control - - 
accelerations to the derivatives of 5. (4.2) 

Two signum functions are used for convenience of notation 

T = - cos f when f = 0, or f = n (4.8) 

TO,Tf= define the apses at which impulses are applied (D.8, D.9) 

i = Ti signum (pi) (D.16) 



and two functions of the eccentricity are used 

Some constants are used to define the transfers which are considered 

= the initial time (usually to = 0) 

tf = the final time. If to = 0, tf is the time of flight 

a '= the reciprocal specific power of the low thrust power 

supply (2.2, B. 3) 

c = the high thrust rocket exhaust velocity (2.1, B.5) 

'J = the gravitational constant (D.4) 

Bi d T  , a dimensionless gravitational constant (D. 1) 
4c ai 

'r 
tf = -Z = dimensionless time of flight (3.3, 4.11, D.2) 
a C 

P = = dimensionless change in semi-major axis (D. 3) 

JI = $ (03-02) to indicate the low thrust change in 
eccentricity (D. 10) - 

Y = J$ to indicate the low thrust change in semi-major 

axis (D.ll) 

The optimal controls are described in terms of 

E = the primer vector, the velocity costate (2.11, 4.5) 

A - = the costate vector appropriate to the problem formulation 

P = the non-zero component of the primer at an apse (4.9) 



P ' = the non-zero component of the first derivative of the 

primer at an apse (4.10) 

CYD = two constants which define the primer. Either (4.6, 

4.7) or (4.14, 4.15) 

When the state is a vector of orbital elements 

1 = costate corresponding to the averaged semi-major axis 

(D. 13) 

A 2 = costate corresponding to the averaged t3 (D.12) 

X10,X20 = the initial conditions on X1, X1 (D.14, D.15) 

x ~ , X ~ , X ~  = the costates corresponding to the mass flow functions 

J, K, L. (B.12, B.13, B.14) 

The optimal accelerations are 

A1 = a high thrust acceleration used at any time except the 

final time (2.13, B.5) 

= the low thrust acceleration used during the entire 

mission (2.12, B.4) 

43 = a high thrust acceleration used only at the final time 

after dropping any undesired power plant (2.14, B.5) 

These accelerations are determined by the primer using the terms: 

Q(t) = a coefficient which related A_& to 2 (2.15, B.17) 

61(t) = the threshold to determine use of A_1(2.16, B.15) 

3 = the threshold to determine use of A_3 (2.17, B.16) 

We sometimes use 



and for transfers in field free space 

u o u  = a vector which partially defines A_k (3.6, C.l) 

w w = a vector which partially defines (3.7, C.l) 0 - 

v1 = the dimensionless magnitude of an initial impulse 

(3.8, C.2) 

2 = the dimensionless magnitude of a final impulse 

(3.9, C.3) 



Appendix B 

THE GENERAL OPTIMIZATION PROBLEM 

The analytic steps involved in the maximization of payload for 

transfers in an arbitrary gravitational field are presented in this 

appendix. Chapters 1 and 2 outline the ideal engine assumptions 

which form the basis of the derivations. The mass flow differential 

equations are derived from basic physics and then analytically solved. 

The equations for propulsive power required by each engine and con- 

servation of momentum will be used. The solution for the final payload 

is found in terms of some special functions. From these, equivalent, 

but simpler, differential equations can be stated for the payload. Then 

the general optimal control problem for the maximization of payload is 

formulated and a partial solution obtained to yield a simplified set of 

necessary conditions. 

B.l Performance Functions for Ideal Engines - 
Two basic equations define the operating characteristics of both 

velocity and power limited engines. The conservation of momentum for 

any engine gives 

ci = -ml~_~l (B.1) 

and the propulsive power required to accelerate the propellant is 

1 -  2 Power = - m ci  (B .  2) 

where 

m(t) = the current spacecraft mass (expressed as a fraction 

of the initial mass 



ci = the rocket exhaust velocity for a particular engine 

A. = the acceleration vector for the spacecraft as a result 
-1 

of the effect of a particular engine 

There are also the restrictions 

Three distinct engines are assumed for this formulation. Engine 

2 is assumed to be limited by the power supply mass, which has a power 

output proportional to its mass. Thus 

1 Power = m 
P 

where 

m = the power plant mass 
P 

a = the reciprocal specific power of the power supply 

Although fixed for a mission, the power plant size remains to be 

determined. For this fixed power, equations B.l and B.2 can be 

combined to eliminate the exhaust velocity 

C = 
2 Power 

mlA_QI 

to give the fuel flow rate 



Since the propulsive power is fixed, and the accelerations, Ak, are to 
be optimally chosen to maximize the payload, the exhaust velocity, c, 

is variable, depending upon &. 
It is assumed that a portion (or all) of m can be dropped at the 

P 
final time t = tf 

where 

me = power plant retained 

m < m  
e -  P 

;(tf) = unit impulse at t = tf 

u(tf) = unit step at t = tf 

Engines 1 and 3 have identical characteristics, but are used at 

different times. These engines are assumed to be limited by their 

exhaust velocity 



For these engines, the mass flow is obviously minimized if the exhaust 

velocity is the maximum c. Thus 

Engine 1 can be used at any time during the flight except the final 

time. Engine.3 can only be used at the final time, after a portion 

of the power supply, if any, has been discarded. 

The total mass flow differential equation is given by the sum of 

the individual elements 

Before using or dropping any of the power plant, this differential 

equation is solved by 

where 

2 L (t) = ; fK2(t) kE2 (t) dt 



Define 

After dropping the power plant we have the solution 

2 m(t) = J (t) [ :12 
1 + - L 2  m 1 

P 

where 

Thus the explicit solution for the total mass differential equation 

is given by 

2 m(t) = J (t) I ~i(t) - (m -m )u(tf) 
1+& L (t) P e 

P J 
The payload is here assumed to be equal to the final mass 

4 

which is a maximum over m for 
P 

(B. 10) 

If the desired power plant size me is larger than the optimum m P ' we 
are not free to choose the power plant mass. For this case the low 

thrust power supply will have the size me. The notation m P will be 



retained so that 

m = the optimum power plant size 
P 

me = the desired power plant size 

Thus there are two expressions for payload dependent upon the desired 

power supply size 

(B. 11) 

i f m  > m  
e -  P 

J, K, and L can be described by the differential equations 

with the boundary conditions 

Thus the maximization of the payload mT subject to these differential 

equations is entirely equivalent to the maximization of the final mass, 

subject to the previously given mass flow differential equations. 



B . 2  A partial solution of the general payload optimization problem 
P 

A general optimal control problem for the maximization of payload 

for transfers in an arbitrary position dependent gravitational field 

is presented and partially solved. The payload with its associated 

differential equations as derived in the previous section is maximized. 

In addition to the control accelerations, the spacecraft is assumed 

to have a position dependent acceleration. A partial solution is 

obtained for ease of application to problems with specific gravita- 

tional fields. Two basic forms of the vehicle differential equations 

are considered. 

The payload m, as given by 

with 

m = L1(K1 - L1) 
P 

is to be maximized subject to the differential equation constraints 



with the boundary conditions 

L(tO) = o+ 

and by definition 

$(to) = fo - 

a t f >  = if - 

K(tO) = 1 

tf is fixed 

The remainder of this section is a straightforward application of 

classical optimal control techniques. The differential equation con- 

straints are adjoined to the cost function integral (none here) to 

form the Hamiltonian. The costate differential equations and boundary 

conditions are then presented and partially solved. The resultant form 

of the Hamiltonian is then maximized by specification of the control 

accelerations lii. 

Using h with an appropriate subscript for the costate variables, 

the Hamiltonian is given by 



The costate differential equations are found from H 

and after a couple of substitutions 

The costate X is actually the costate corresponding to the velocity, 
2, if only first derivatives were used. - 

Since the boundary conditions on 5 are completely specified, the 

boundary conditions on 1 are free to be chosen (so that xo, 4, &,,and 
are satisfied). The other costate boundary conditions are found -f 

from the payload m,, The f subscripts indicate a final condition on 

the variable. 

am, 2m, 

" f = " ; = J ; -  



The differential equations for XJ, XK, and XL can all be solved 

explicitly. In terms of the solutions J(t), K(t), and L(t) of the 

previous section, we have 

(B. 12) 

(B. 13) 

2 1 2  [I+-L (t)] if m < m m 
P e -  P 

In terms of these solutions 

where 

2 2 1 2  I J1 (K1-L1) [I+ ,y- L (tl] if me < m 
P - P 

S1(t) = c (B. 15) 
mT 1 2  

2 [I+ ,y- L (t)l if me 2 m 
I+ 1 L e P 

me 



(B. 16) 

The ~amiltonian is maximized by the controls 

if me < m - P 

(B. 17) 

if me 1- m 
P 

In summary the Hamiltonian, state and costate equations are 

'I' aR(x) "(-1 " - - 
ax 

The costate vector - X as defined for this problem is often called 

the primer vector 2 in the classical literature. From the homogeneous 



differential equation in 2 ( X )  - it is clear that E and its first two 

derivatives are continuous when or are impulsively applied. This 

property will be used in later sections. In general the primer is the 

velocity costate, the coefficient of the acceleration vector in the 

Hamiltonian. 

The limits of low thrust for this mixed thrust formulation is 

easily given. When - X is scaled such that provides an adequate 

acceleration to accomplish the entire transfer and 

no high thrust will be used. 

The limit of pure high thrust occurs at a discontinuity in the 

equations due to the manner in which the low thrust cost integral is 

defined. When no low thrust is used A_k = Q1 = L1 = m = 0. There 
P 

1 2  are difficulties in the L (t) term in 61(t) which can be easily 
P 

circumvented by never using a zero me. If me is very small (.001 will 

do) there will be a negligible increment in the payload and some low 

thrust will always be used. Analytically, the nature of the high 

thrust limit is easily shown. The low thrust cost 

can be rewritten using 



and the expression for Q when me = 0 < m to give 
P 

where 

Note that I1 can take on a non-zero value, even if no low thrust is 

used! 

Solving this equation for L we get 

There are limits on L1 implicit in the formulation of the payload 

We must have 

then 

which implies that Q, AR and m are all zero. Thus pure high thrust 
P 



occurs at a discontinuity in the equations which evolve from this 

formulation of the problem. 



Appendix C 

FIELD FREE SPACE TRANSFERS 

The necessa ry  c o n d i t i o n s  f o r  a r b i t r a r y  t r a n s f e r s  i n  f i e l d  f r e e  

space a r e  solved and app l i ed  t o  t h e  s p e c i f i c  problem of a  change i n  

p o s i t i o n .  The problem of a  change i n  v e l o c i t y  i s  a l s o  solved.  These 

problems a r e  d e f i n e d ,  and t h e  r e s u l t s  summarized i n  Chapter 3. 

C .1 General t r a n s f e r s  - 
The dynamic equa t ions  of motion f o r  the  low t h r u s t  phase a r e  

a n a l y t i c a l l y  determined f o r  a r b i t r a r y ,  f i x e d  t ime t r a n s f e r s  i n  f i e l d  

f r e e  space .  Since  i n i t i a l  and f i n a l  impulses a r e  i n  t h e  d i r e c t i o n  of  

t h e  low t h r u s t  a c c e l e r a t i o n  which is  known, only  t h e i r  magnitudes, 

along w i t h  t h e  boundary cond i t ions  on the  p r imer ,  remain t o  be d e t e r -  

mined. As shown i n  Chapter 3, t h e  primer and thus  t h e  low t h r u s t  

a c c e l e r a t i o n  f o r  t h i s  problem a r e  l i n e a r  f u n c t i o n s  of time. A p o s s i b l e  

choice  f o r  A_R which s a t i s f i e s  t h i s  c o n s t r a i n t  i s  

where by d e f i n i t i o n  

u O ,  wO a r e  p o s i t i v e  d imensionless  c o n s t a n t s  which remain t o  

be determined 

2, w_ a r e  u n i t  v e c t o r s  which remain t o  be determined 

Optimal impulses a r e  i n  t h e  d i r e c t i o n  of  t h e  primer (and t h u s  

A - a ) .  



A first impulse will result in the change in velocity 

where vl > 0 is the dimensionless magnitude of the first velocity - 
change. Similarly, the changc in velocity due to a final impulse in 

the direction of (tf) is 

where v2 2 0 is the dimensionless magnitude of the final velocity 

change. Intermediate impulses are not allowed. The optimality of' 

this assumption must be verified for any specific transfer by comparing 

A (t)l with 6A(t). I -R 

The change in velocity during the low thrust phase is easily 

obtained by integrating kg. The initial condition is x1 and the final 
condition is c 1 - x2, so that after the final impulse we have the 
desired final velocity. These are conditions on the boundaries of the 

low thrust phase, not the total transfer. 

At the end of the low thrust phase 



The position integral is also easily obtained 

At the final time 

The solutions for uou and wow_ are found by satisfying equations 

C . 4  and C . 5 .  

where 

The magnitudes uo and wo are determined by the solution of 



The only undetermined parameters are vl and v2, the dimensionless 

magnitudes of the two impulses. The two conditions that the primer 

be equal to the threshold at the times of each impulse are used to 

determine vl and v2. The thresholds are in terms of the integrals 

J1, Kl, and L1. By its definition, the integral L1 as given by 

is found to be 

The integrals K1 and J1 are simple expressions due to the definitions 

of v1 and v2. 

1 K1 = exp ( -  - v ) 2 1 

1 Jl = exp ( -  -Z- v2) 

At the initial time 



and at the final time 

C - 1 ro A (t ) I  = -wO - - - I-R f 
tf 

CXC T 

Thus vl and v2 are determined by the conditions at the times of the 

impulses. Either 

or (vl = 0 and 3 < ac - - T - 

and 

These are four conditions which can be used to determine the four 

parameters uo, wo, vl, and v2. These results are summarized in 

Chapter 3. 

C.2 Change in position - 
The specialization of the previous general transfer to one which 

changes only position (V_ = 2) has a complete analytic solution if me=O. 
With V - = 0, the coordinates can be chosen so that the problem involves 

only a single dimension. Thus let 

The pure high thrust solution applies an initial impulse in the desired 

direction and an equal and opposite final impulse at the final position 

such that = 0. The magnitude of these velocity changes depends upon 



t h e  t ime of f l i g h t .  The pure  low t h r u s t  s o l u t i o n  i s  shown i n  Figure 

C . 1 .  The primer i s  a  l i n e a r  f u n c t i o n  of t ime.  Since  t h e  i n t e g r a l  

Figure  C . l  Re la t ionsh ip  of t h e  primer t o  t h e  th resho lds  

of &must be zero f o r  V - = 0 ,  t h e  i n i t i a l  and f i n a l  va lues  of I & , I  must 

be equa l  a s  shown. For t h e  mixed t h r u s t ,  when me = 0 ,  the  two 

t h r e s h o l d s  &A and 6 B  a r e  equa l .  Thus i f  IAR(0) 1 = 6 ~ 9  then I A % ( ~ ~ )  

and v i c e - v e r s a .  I f  both impulses a r e  used,  they must be equal  i n  

magnitude, and i n  oppos i t e  d i r e c t i o n s .  For t h i s  c a s e ,  it  i s  n o t  

p o s s i b l e  t o  use  only  one impulse.  Any impulse must be i n  t h e  d i r e c t i o n  

of t h e  p r imer ,  and A R  can n o t  have a  nega t ive  ( p o s i t i v e )  i n t e g r a l  t o  

balance  an i n i t i a l  p o s i t i v e  (nega t ive )  impulse s i n c e  IAR ( t f )  1 < lAR(0) I . 
Thus f o r  t h e  mixed t h r u s t  w i t h  6A = 6 B ,  we must have 



Since 

where 

v  
d e t  = - ( &  + 

0 

we must a l s o  have 

A f t e r  some a lgebra  we ge t  

Using t h e s e  va lues  we ge t  

f o r  t h e  v e c t o r  d i r e c t i o n s  which def ine  t h e  d i r e c t i o n  of t h e  high and 

low t h r u s t  c o n t r o l s .  Using t h e s e  va lues  we ge t  



Applying the condition at the threshold 

we get 

and 

The solution uo = 0 corresponds to pure high thrust which will be 

discussed later. To complete the definition of the problem 

and the mixed thrust payload is 

The constants uo and vl must be positive by their definition. uo is 

positive if 

and vl is positive if 



If T - < 6, pure high thrust should be used (uo = 0) .  The resultant 

payload is 

s 
m, = exp ( -2 ?.) 

If r 2 6 (1 + $)', pure low thrust should be used. The resultant pay- 

load is determined by 

and 

Since we are not matching a threshold condition, the pure low thrust 

payload can be given for all me 

where 

This completes the description of the optimal payloads for a change in 



position in field free space, since other analytic solutions are 

not possible, 

C.3 Change in velocity 

The solution is found for a change in velocity in field free space 

as defined in Chapter 3. Since, by assumption, the dimensionless change 

in velocity, V, is positive, the acceleration A& will also be positive. 

Let 

where u is a positive dimensionless constant which must be determined. 

The change in velocity, V, due to an initial impulse is optimally in 

the direction of A & .  Let 

where vl 2 0 is the dimensionless magnitude of the first (and only) 

high thrust velocity change. Integrating the equation of motion for the 

state we get 

At the final time 

Thus v L  is specified in terms of V and u 



The necessary condition on AR at the time of the impulse determines u. 

We must have 

where as before 

and At < &A 

and 

Some integrals of the controls are necessary for the specification of 

the thresholds, Because of the definition of vl 

K~ = exp ( -+ .I) 

Also 



Thus 

The optimal controls can now be completely determined. If me 2 m 
P ' 

At = b A  if 

which is solved to give 

and then 

These equations are only valid when the constraints u 2 0, vl 2 0, and 

m < m are satisfied by 
e -  P 

and 

If T - c 2, the solution u = 0 must be used to match the threshold. This 

possibility is discussed later. 



The payload for this case is 

The second expression for the mixed thrust payload is obtained for 

> m when AQ = as determined by m e -  p 

and as before 

Since 

K,' = exp ( - "1 

it must satisfy the transcendental equation 

which must be solved numerically. In terms of K1 

The payload expression 



where K1 is the solution of equation C.6, is applicable when u 2 0, 

> 0 (Klfl), and me m as expressed by the relations v1 - P 

\ 4 @/+ - '1 exp (-V +fi - 2) 
T 

Outside the bounds of applicability of the mixed thrust payload expres- 

sions, either pure high, or pure low thrust will be used. Use pure low 

thrust when 

for which 

and the pure low thrust payload is 



where 

I f  me m , pure  low t h r u s t  i s  used when Ak i s  s a t i s f i e d  by 
P 

I f  me 2 mp,  t h a t  r e l a t i o n  i s  given by 

Note t h a t  m = f o r  r = 2 ( 1  + ;12 Pure high t h r u s t  i s  used i f  u = 0 ,  
P 

and vl = V f o r  which 

mT = exp ( - V ) 

A s  shown e a r l i e r ,  u = 0 i s  t h e  only non-negat ive  s o l u t i o n  of Ak  = 

f o r  T - < 2 i f  m < m I f  u = 0, mp = 0. Thus use pure  h igh t h r u s t  f o r  e - p '  

There a r e  f i v e  express ions  f o r  t h e  payload.  Choice of  t h e  one t o  use 

i s  determined by t h e  r e l a t i v e  magnitudes of  r ,  m e ,  and V. These r e s u l t s  

a r e  summarized i n  Chapter 3 .  



Appendix D 

THE NECESSARY CONDITIONS FOR 

TRANSFERS BETWEEN COPLANAR COAXIAL ELLIPSES 

Necessary conditions for the maximization of payload on transfers 

between coplanar coaxial ellipses are found. Ideal high and low thrust 

engines as defined in Chapter 2 are used to provide the propulsion 

and the differential equations of motion introduced in Chapter 4 

define the transfer. Additional notation is introduced in order to 

simplify many of the expressions. Using the assumptions of Chapters 

2 and 4, the equations of motion can be completely integrated for 

high and low thrust phases. Using these results, the payload can be 

analytically expressed as a function of the parameters necessary to 

define the various phases. It is not possible to analytically deter- 

mine the relative amount of high and Low thrust used due to the 

existence of transcendental functions in the necessary conditions. 

This appendix contains the analytics which reduce the dynamic 

optimization problem to a set of necessary conditions for the para- 

metric maximization of an expression for the payload. 

For transfers between coplanar coaxial ellipses, analytic expres- 

sions are known for ideal high and low thrust transfers. For the 

combination, we wish to determine the payload improvements and the 

character of the transfers. Certain assumptions must be made about 

the mode shapes of the transfers and then verified by checking other 

relations. The derivations of this appendix assume two high thrust 

phases separated by a low thrust phase. The first high thrust phase 

can have two impulses at opposite apses of a coasting orbit. The 

second high thrust phase allows one impulse at the final apse. The 

low thrust phase accomplishes the remaining portion of the transfer 

between these high thrust phases by the application of a small con- 

tinuous control. Pure high thrust transfers occur when the first 



high thrust phase accomplishes the entire transfer. If no high thrust 

impulses are used, the result of course is a pure low thrust transfer. 

For this assumed mode of transfer, the general optimization prob- 

lem can be stated using the results of Chapter 2. After introducing 

some necessary notation, the problem is divided into the separate 

analysis of the high and low thrust phases. The necessary equations of 

each phase are derived prior to their combination as an expression for 

the mixed thrust payload and the necessary conditions for its optimality. 

These necessary conditions are then related to a set of derivatives 

convenient for the numerical maximization of the payload expression. 

Expressions for the second derivatives of the payload are also derived 

for use in the numerical procedures. Finally a simpler suboptimal 

transfer is derived. 

D.l The optimal control problem and some nomenclature 

The general optimal control problem of Chapter 2 will be stated 

for the specific state differential equations.of Chapter 4. Under the 

mode shape assumptions of this appendix, the necessary conditions for 

this problem will be stated. A simplifying notation is then introduced 

for use in later sections of this appendix. 

As shown in Chapter 2, for the maximization of the payload 

where 



governed by the differential equations 

the Hamiltonian 

is maximized by the optimal controls 

where 



and - X is governed by the differential equation 

with the boundary conditions on - X free, but implicitly specified by 

the other necessary conditions. The subscripts on 2 indicate the evalu- 

ation of 2 at the apse and time appropriate for each of the impulses. 

The thresholds 6 are given by 

i f m  > m  
e -  P 

To verify the validity of the timing assumptions for the impulses, the 

primer, p, at the other initial and final apses must be smaller in 

magnitude than the primer at the apses of the impulses. The optimality 

of the assumed mode requires 

during the entire low thrust phase. Otherwise, a small intermediate 

impulse would locally increase the payload. This appendix derives 

explicit expressions for the various parameters stated here in the pay- 

load and necessary conditions. 
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Before the problem of mixed thrust transfers is solved, some 

notation needs to be established. There are three dimensionless 

constants which are used 

- Bi - = dimensionless gravitational constant (D.1) 

tf +r = 7 = dimensionless time of flight 
CI C 

dimensionless change in semi -major axis ( D . 3 )  

where 

u = the gravitational constant for the basic orbital (D.4) 

differential equation 

c = exhaust velocity of the high thrust engine 

a = the reciprocal specific power of the low thrust power 

supply 

ai= the semi-major axis on the same orbit as indicated by 

€Ii. (The subscript will be explained later) 

Note that the same definition of T was used for field free space trans- 

fers. The constants B0, p ,  €I0, Of, and T completely specify the orbital 

transfers being considered here. 



T r a n s f e r s  a r e  d i scussed  i n  terms of t h e  change i n  semi-major a x i s ,  

a ,  and a  v a r i a b l e  9 which i s  r e l a t e d  t o  e c c e n t r i c i t y  by 

cos 2 e i  = e i  

This  was chosen because t h e  terms a r e  f r e q u e n t l y  encountered.  

Note t h a t  

cos  e = g 
s i n e  = d F  

In  d i s c u s s i n g  t h e  t r a n s f e r s  we a r e  i n t e r e s t e d  i n  s i m i l a r  equa t ions  f o r  

t h e  pr imer  a t  t h e  oppos i t e  apses  of an e l l i p s e .  Choosing 

when E = f  = 0 o r  a we have 

a t  apoapse 

- 1 a t  p e r i a p s e  

Define two f u n c t i o n s  of  9 such t h a t  

From t h i s  d e f i n i t i o n  



and 

of course  we a l s o  have t h e  i d e n t i t y  

There a r e  two parameters o f  i n t e r e s t  a t  an apse ,  t h e  r a d i u s  and v e l o c i t y .  

These a r e  g iven by 

The d i f f e r e n t  phases of t h e  t r a n s f e r  can be i d e n t i f i e d  by a p p r o p r i a t e l y  

de f ined  8 ' s .  Let 

be on t h e  i n i t i a l  o r b i t  be fo re  any t h r u s t i n g  

be on a  c o a s t i n g  o r b i t  a f t e r  t h e  f i r s t  impulse 

8, be a t  t h e  beginning of t h e  low t h r u s t  phase 
L, 

( a f t e r  the  second impulse) 

83 be a t  t h e  end of t h e  low t h r u s t  phase 

(be fo re  the  f i n a l  impulse) 

€If 
be on the  f i n a l  o r b i t  a f t e r  a l l  t h r u s t i n g  i s  completed 



The intermediate semi-major axes are all related to these 8's. 

In order to simplify notation only two T's will be used to define 

the apses. Let 

when the first impulse is at periapse and the second impulse is at 

apoapse and To = -1 if the opposite. Then let 

With this definition, the radii at the first two impulses are 

Thus we have 



From t h i s  r e l a t i o n  we g e t  

A t  t h e  f i n a l  t ime,  l e t  

i f  t h e  f i n a l  impulse i s  a t  apoapse,  and Tf = -1 i f  a t  p e r i a p s e .  Thus 

and t h e  r a d i u s  a t  t h e  f i n a l  impulse i s  

Thus 

Two parameters  a r e  u s e f u l  i n  t h e  d e s c r i p t i o n  of t h e  low t h r u s t  

phase.  Let  



and 

by definition. From the previous relations we have 

(D. 11) 

Using these definitions, the parameters which are used in the 

necessary conditions can be derived in a more concise notation. 

D.2 The low thrust phase - 
During the low thrust phase of a mixed mode transfer, the high 

- thrust is zero (fill = A12 - A3 = 0) and certain aspects of the equations 

simplify. By the assumption of Chapter 4, there is only a small change 

in the orbital parameters during any one orbit. The periodic and 

secular variations in the orbital parameters can be separated by 

averaging the equations of motion to eliminate the periodic terms. Then 

the differential equations for the secular variation in parameters can 

be completely integrated and the free boundary conditions on the costate 

1 completely determined. Finally the analytic expressions for the pay- - 
load, and time history of the primer and state are given to complete 

the solution for the low thrust phase. 

The Hamiltonian can be explicitly given using the expression 

for B(x,t) in equation 4.2. 



1 a  
; Z Q1u 2 5 

1 - e  cos E [4(hla)  + H h Z 2 +  hZ2cos  2 E  

3 2 3 2 - & cos E + cos E(4(hla)  e-4hlah2sin  28 - ;i h 2  e ) ]  

The complete dynamics of t h e  low t h r u s t  phase a r e  given by the  Hamil- 

t o n i a n  s i n c e  t h e  s t a t e  and c o s t a t e  can be obta ined by the  canon ica l  

d i f f e r e n t i a l  equa t ions  

The p e r i o d i c  terms i n  H (and i m p l i c i t l y  i n  the  o t h e r  equa t ions )  can be 

e l imina ted  by t a k i n g  the  t ime average of H over any o r b i t a l  pe r iod .  

H( l -e  cos E)dE 

Since  t ime does no t  appear as an e x p l i c i t  v a r i a b l e ,  t h e  averaged 

Hamiltonian,  H1, i s  a  c o n s t a n t .  The s t a t e  and c o s t a t e  v a r i a b l e s  i n  H1 

must now be regarded a s  averaged v a r i a b l e s ,  s i n c e  the  informat ion about 

t h e i r  p e r i o d i c  v a r i a t i o n  has been l o s t .  The d i f f e r e n t i a l  equa t ions  f o r  

t h e  averaged s t a t e  and c o s t a t e  a r e  s t i l l  r e l a t e d  t o  H1 by t h e  d i f f e r e n -  

t i a l  equa t ions  given above. 



Carrying out the indicated partial differentiation, we get the set 

of differential equations. 

with the boundary conditions 

by the earlier definition of the subscripts. 

The following steps are used to analytically integrate these 

equations. Of course we have 

A 2  = I 2 0  

The differential equations for X1 and a can be combined to give 

(D. 12) 



which can be integrated easily 

X1a = x 1oa2 - 

Now a can be determined from 

to give 

For 6  tie have 

Thus 

From basic trigonometry we get 

5 sin & c 0 - 0 ~ )  = dF iZ0 

(D. 13) 



The initial conditions on X can be determined from the terminal - 
conditions on z. These are 

(1-y cos $1 '10~2 = 7 Qla2tf (D. 14) 

The other solution 

was discarded as it does not maximize the payload mn. Thus for the 

Hamiltonian we have 

with 

h = 1 -  2 y c o s $ + y  2 

Similarly the boundary conditions on X can be substituted into the time - 
history of x. - The low thrust acceleration is given by 

The low thrust cost L~~ is an integral of AtZ over the entire 
transfer. Over an integral number of orbits, H and H1 have identical 

integrals. Thus 



2 The o n l y  t ime v a r y i n g  p o r t i o n  o f  t h e  t h r e s h o l d  61( t )  i s  L ( t ) .  For 

t h i s  problem 61( t )  i s  a  l i n e a r l y  i n c r e a s i n g  f u n c t i o n  o f  t ime .  The r a t e  

o f  i n c r e a s e  i s  r e l a t e d  t o  t h e  amount o f  low t h r u s t  used  d u r i n g  t h e  

t r a n s f e r .  I f  t h e r e  i s  no low t h r u s t ,  L ( t )  = 0 and t h e  t h r e s h o l d  w i l l  

be c o n s t a n t .  

I n  t h e  n o t a t i o n  of  t h i s  appendix ,  t h e  p r imer  a t  an  a p s e  i s  g iven  by 

w i t h  

-7-7- t ' G(8) = (&) (2) (ly [(I-y cos  I - h  - 
t f  

A t  t h e  s t a r t  o f  t h e  low t h r u s t  phase 

A t  t h e  end of  t h e  low t h r u s t  phase  



Thus the low thrust phase is completely defined by 

sin (8 - 8 ) = y sin $J d? 2 tf 

2 2 t  L (t) = L1 -f- 

f 

This section of the appendix has derived expressions for the 

change in orbital elements during the low thrust phase of a transfer. 

Expressions for these maxima of the primer (at the apses) during the 

transfer have been derived. Further a simple expression has resulted 

for the time varying portion of the threshold. The fuel cost of the 

2 low thrust phase (L1 ) is also given. Thus the total dynamics have 

been explicitly solved and parameters of interest identified. It is 

now possible to match this one low thrust phase with initial and 

terminal high thrust phases. 

D.3 The high thrust phases 

As shown in the previous section, the primer has a maximum magni- 

tude at an apse and at that maximum the primer has only a tangential 

component. Thus any high thrust impulses will be tangential at an apse. 

Based upon that knowledge, an expression will be derived for the 

cost of such impulses. Then the conditions on the primer at an impulse 



will be given in terms of the expression for the primer at the boun- 

daries of the low thrust phase. 

An optimal impulse at an apse imparts a change in the velocity in 

the tangential direction. Since the orbital velocity an an apse is 

also tangential, this represents a change in the scalar magnitude of 

velocity. It is assumed that the direction of rotation on the orbit 

is never reversed by an impulse. The velocity at an apse is given by 

where 

R = a(l+T e) 

As shown in Chapter 2, the payload for a high thrust impulse is 

determined by 

The radius at the first impulse is 

and the change in velocity is 



The radius at the second impulse is 

R2 = 2a2F2 L 

and the change i n  velocity is 

The radius at the third (and final) impulse is 

and the change in velocity is 

Finally define three more signums S1, S2, S3 such that 

(D. 16)  



To complete the solution 

and 

= exp [ - abs (211 
= exp [ - S3 2 (Gf-G31] 

The definition of the S functions also implies that 

The high thrust phase is thus completely defined by the payload 

functions K1 and J1 and the variables 0 which describe the transfer. 

In order to determine the relative amounts of high and low thrust 

(choice of 0's) the appropriate necessary conditions are required, As 

shown in Chapter 2, the primer must be matched with the thresholds 61 

or 63 at the time of each impulse. Since two initial impulses are 

allowed, the level of the primer at the first apse is required in terms 

of the primer at the time of the second impulse. 



Both the primer and its derivative must be continuous across an 

impulse. From the previous section, at the beginning of the low thrust 

phase, the primer is given by 

where 

and the derivative of the primer is related to 

These values for the primer are fixed by the low thrust phase. In 

terms of these definitions of C and D we also have 

C and Dl must be chosen to satisfy these relations. Having done so 1 
we get 



and 

2 

Similarly we get 

Also it follows easily that 

At the final time 

where 

- 1 2B2  . - (COS JI - Y) C 3 -  T 

Similar to the preceding we get 



These conditions during the high thrust phase can now be matched with 

the parameters from the low thrust phase to completely define the 

necessary conditions for the mixed mode transfer. 

D.4 The mixed thrust necessary conditions - 

The previous sections have derived expressions for the cost func- 

tions and the nature of the primer for each phase of an optimal trajec- 

tory. Upon definition of the thresholds, the mixed thrust necessary 

conditions can be summarized. This section uses the nomenclature and 

definitions of the previous sections. 

The initial threshold 

can be used to define the time history of the threshold 

and 

There will be an impulse at the first apse if the primer at that 

time is equal to the initial threshold. Thus either 



or there is no first impulse, which is indicated by 

For this to be optimal we must also have 

Similarly at the second apse either 

At the final time either 

These three conditions completely define the necessary conditions for 

transfers which maximize the payload under the assumptions of this 

chapter. To verify that no other impulses should be used, the primer 

at all other times must be less than the threshold appropriate to that 

time. Thus if 

and 

IP ( ~ )  l < sl(t) 



the assumptions on the timing of the impulses are valid. 

D.5 The first derivative of the payload 

The equations in the previous section are useful for the analysis 

of the problem, but in their present form, they are not convenient for 

a numerical iteration. The first derivative vector of the payload 

with respect to the 0 ' s  will be determined here and related to the 

necessary conditions of the previous section, These equations will 

then be used to obtain the second derivative matrix for later use in 

the numerical iterations. 

Expressing the payload as 

where 

the derivative of the payload with respect to 8 can be expressed by 

where 

(D. 17) 

(D. 18) 



(D. 19) 

(D. 20) 

In a numerical optimization of payload all first derivatives will be 

driven to zero, or the appropriate 8 specified, and no longer free to 

be chosen. 

It is easy to relate g2 to the necessary condition 

By algebra we have the relationships 



and 
1 - a K1 
K1 = - S 2 B 2  

and finally 

Optimally the impulse is applied in the direction of the primer and 

since S 2  To is the signum of the second AV, it is also the signum of 

p2. Thus the first derivative here is simply related to the earlier 

necessary condition by a non-zero coefficient. The derivative with 

respect to e 3  is similarly related to its necessary condition. How- 

ever, more algebra is required to relate the derivative with respect 

to to its necessary condition. Those steps will not be carried 

out here. 

For completeness, all pf the derivatives required for all first 

derivatives of the payload are expressed below. 

where the other derivatives are given below. 



- ax - X1 - -  '2 4T (1 - y  cos I) 
ael 3 

ax 
X2 = nz G2 

= -82 & [(I - y cos I) - y  4; sin $1 
2 

D.6 The second derivative matrix - 

The matrix of second derivatives of the payload with respect to 

the 0's is given in this section. The terms were obtained by a 

straightforward differentiation of the first derivatives, and are 

presented here for completeness. These terms are used in the Newton- 

Raphson step in the numerical iteration which is described in the next 

appendix. For a solution which satisfies the necessary conditions, a 

negative definite second derivative matrix is a sufficient condition 

for the solution to be at least locally maximum. 



The second derivative matrix is 

with the individual terms given by 

* 

d 

(D. 21) 



Some of these terms have two expressions depending upon the relative 

sizes of me and m For m < m we have 
P ' e -  P 



F o r  me m we have 
P 



The o ther  de r iva t ives  a r e  given by 





D.7 A simpler transfer 

In the process of investigating transfers between coplanar 

coaxial elliptic orbits, with two initial impulses, it was observed 

that the optimal transfer often approached a simpler transfer. This 

other transfer was investigated and found to be near optimal for many 

cases. It also provides a good initial condition for the numerical 

optimization of the complete problem. It is presented here, along 

with the necessary and sufficient conditions for its optimality 

This near optimal transfer uses two impulses to go from the 

initial orbit to an intermediate orbit with an eccentricity equal to 

the final eccentricity. Then the low thrust phase spirals to the 

final orbit at constant eccentricity. No final impulses are allowed. 

The only free parameter is the semimajor axis of the intermediate 

orbit. In terms of the 8's which define the complete problem, we 

are assuming 



Thus I) = 0. Instead of el, is more convenient to use as the 

free parameter. 

For these special assumptions, let 

be the independent variable in the algorithm. The low thrust cost is 

with 

Sy  = signum (Rf - Ro)  

and all other variables defined as before. For the high thrust, the 

cost is 

and from before 

having substituted e2 = ef and explicitly expressed the F and G 

functions. With 



and TI defined by 

we get 

Note that 

Similar to the previous two sections, the derivatives which are 

necessary for determining y are 

and 

where B and are as before and the derivatives are 





Appendix E 

THE NUMERICAL PROCEDURES USED 

As described in Chapter 5, a sequence of changes in 8,  called 

68, is desired which will increase the payload and lead to a final 

value of - 8 such that mv is (locally) maximized. The four steps which 

are used for the maximization of mv are the gradient, Newton-Raphson, 

parabolic, and acceleration steps. The description of how and when 

to use these respective steps is in Chapter 5. 

E.l The gradient and Newton-Raphson steps. - 
Expressions are derived in Appendix D for the payload and its 

first two derivatives as functions of the free parameters - 8. These 

derivatives can be used effectively in a numerical iteration toward 

the choice of 8 which maximizes mT. The gradient step uses only 

first derivative information, while the Newton-Raphson (N-R) step 

uses both first and second derivative information. These two steps 

evolve naturally from the Taylor series expansion for mv about the 

present value for B. 

where 

m,(g = the value of the payload for the current value 

of 0 .  - 

amT 
g = = the vector of first derivatives of the payload 

- 
with respect to the - 8's evaluated at - 8. (g is 

often called the gradient vector) 



agT 
G = G~ = = the matrix of second derivatives of the payload - - - 

with respect to the 0 ' s  - evaluated at 8. 

Analytic expressions for mT, g, and - G are given in Appendix D. This 

series converges for small enough 6 %  if all derivatives are bounded. 

It is assumed that those conditions apply. 

The gradient step 

The payload can always be increased by a (small enough) step in 

the gradient direction 

where k is chosen so that the step is small enough. From experience 

in the numerical iteration to the solution for this problem, it was 

observed that 

works successfully most of the time. When a smaller step size is 

required, the "parabolic step" described in the next section is used 

to decrease the step size. The gradient step works well when "far" 

from the solution. It provides an improvement in the payload, but 

has poor convergence properties when close to the solution. 

The Newton-Raphson step: 

If 68 is small enough so that all derivatives higher than second 

order can be ignored, the choice of 60 - which maximizes the payload is 

found when the first derivative vector with respect to 68- is zero 



and the  second d e r i v a t i v e  mat r ix  

is  nega t ive  d e f i n i t e .  This optimum s t e p  i s  c l a s s i c a l l y  c a l l e d  t h e  

Newton-Raphson s t e p  and i s  given by 

i f  - G i s  nega t ive  d e f i n i t e ,  - G- '  e x i s t s .  As the  optimum s o l u t i o n  i s  

approached, g (and 68) - w i l l  become s m a l l e r .  The v a l i d i t y  of the  a s -  

sumption on t h e  s i z e  of 68 i s  thus  b e s t  near  t h e  maximum. I f  f a r  - 
enough from t h e  maximum, t h i s  68 - may be too  l a r g e  t o  ignore  t h e  h i g h e r  

o rde r  d e r i v a t i v e s .  A p a r a b o l i c  s t e p  s i z e  c o n t r o l  i s  used i f  t h e  r e -  

s u l t  of t h e  s t e p  i s  no t  accep tab le .  When 

and - G i s  nega t ive  d e f i n i t e ,  no (smal l )  s t e p ,  6 8 ,  can i n c r e a s e  t h e  

payload.  For the  e x i s t e n c e  of a l o c a l  maximum, i t  i s  necessary  t h a t  

g = 0 and 5 be nega t ive  s e m i - d e f i n i t e  (G - - < O), and i t  i s  s u f f i c i e n t  

i f  - G i s  n e g a t i v e  d e f i n i t e  (G - <O). 

E . 2  P a r a b o l i c  s t e p  s i z e  c o n t r o l  

Whenever a  g r a d i e n t  o r  N - R  s t e p  i s  not  accep tab le  ( see  Chapter 5), 

s t e p  s i z e  c o n t r o l  i s  exe rc i sed .  This method uses  the  va lue  of m, and 

i t s  g r a d i e n t  a t  t h e  r e f e r e n c e  p o i n t  and t h e  value  of m, which r e s u l t e d  

from t h e  unacceptable  s t e p .  The magnitude of another  s t e p ,  from t h e  

same r e f e r e n c e  p o i n t  and i n  the  same v e c t o r  d i r e c t i o n  a s  the  previous  

s t e p  i s  determined.  I f  the  s t e p  



was unacceptable (produced a smaller payload), a better size step in 

the same direction is desired. Expressing the Taylor series expansion 

for the payload with the choice of the step 

we get 
1 2 T  

( k  = m,(0) + k + r k  - d - G - d + ... 

As before, this expression is maximized by 

We know m,(l) = m(O - + - d) since that value was the payload which re- 

sulted from the unacceptable step 60 - = - d. Using this we get 

Thus we have 



I f  a  g r a d i e n t  s t e p  was used,  t h i s  s t e p  provides  informat ion about t h e  

second d e r i v a t i v e  i n  the  d i r e c t i o n  of t h e  g r a d i e n t  only .  I f  a  N - R  

s t e p  was used,  t h i s  s t e p  inc ludes  the  informat ion about the  h igher  

o rde r  d e r i v a t i v e s  which were ignored.  I f  a  p a r a b o l i c  s t e p  i s  s t i l l  

too l a r g e ,  t h e  procedure i s  repea ted  and a  b e t t e r  e s t i m a t e  of t h e  

d e s i r e d  q u a n t i t i e s  i s  obta ined.  

No s t e p  s i z e  c o n t r o l  i s  used t o  i n c r e a s e  the  s i z e  of a  s t e p .  

Thus bounds must be p laced upon k  t o  prevent  c u t t i n g  t h e  s t e p  s i z e  

too much. On the  o t h e r  hand, we wish t o  i n s u r e  t h a t  t h e  s t e p  s i z e  i s  

indeed reduced.  Thus k i s  cons t ra ined  by 

I f  the  optimum k i s  o u t s i d e  t h e s e  bounds, i t  i s  assumed t h a t  t h e  

o r i g i n a l  s t e p  was beyond the  bounds of a  reasonable  q u a d r a t i c  approxi-  

mation,  and t h e  a r b i t r a r y  in te rmedia te  choice  

i s  used.  

E . 3  The a c c e l e r a t i o n  s t e p  - 
Numerical d i f f i c u l t i e s  a r e  encountered f o r  some of the  cases  

considered.  The g r a d i e n t  s t e p s  do no t  make any p rogress  and the  

second d e r i v a t i v e  mat r ix  i s  no t  nega t ive  d e f i n i t e  s o  t h a t  a  N - R  s t e p  

can no t  be  used.  For t h e s e  c a s e s ,  the  " a c c e l e r a t i o n  s t ep"  desc r ibed  

below can be used e f f e c t i v e l y .  The problem a r i s e s  when t h e  payload has 

a  smal l  i n c r e a s e  i n  one v e c t o r  d i r e c t i o n  and a sharp  drop i n  o t h e r  

d i r e c t i o n s .  Such c h a r a c t e r i s t i c s  a r e  o f t e n  desc r ibed  a s  a  r a v i n e  i n  

i n  a  minimizat ion problem, o r  a  r i d g e  i n  a maximization problem such a s  

t h i s .  The magnitude of t h e  g r a d i e n t  on the  top of the  r i d g e  i s  u s u a l l y  



q u i t e  smal l .  Two problems a r e  involved i n  the  t r ea tment  of t h i s  

d i f f i c u l t y .  F i r s t ,  t h e r e  must be a  means of i d e n t i f y i n g  such a  r eg ion ,  

and second, a  v e c t o r  i n  t h e  d i r e c t i o n  of t h e  r i d g e  must be de f ined .  

I n  t h e  v i c i n i t y  of a  r i d g e ,  t h e  g r a d i e n t  v e c t o r  p o i n t s  t o  t h e  

top  of t h e  r i d g e  i n s t e a d  of a long i t .  Typical  behavior  i s  a  z ig -zag  

p a t t e r n  a s  success ive  g r a d i e n t  s t e p s  go from one s i d e  of the  r i d g e  t o  

the  o t h e r .  L i t t l e  p rogress  is  made i n  the  d i r e c t i o n  of t h e  r i d g e .  A 

s i n g l e  p a r a b o l i c  s t e p  s i z e  c o n t r o l  w i l l  u s u a l l y  s u c c e s s f u l l y  d e f i n e  t h e  

top of  t h e  r i d g e .  Thus t h e  v e c t o r  between t h e  r e s u l t  of two s u c c e s s f u l  

p a r a b o l i c  s t e p s  can be used t o  d e f i n e  t h e  d i r e c t i o n  of t h e  r i d g e .  

Numerically,  - 8  i s  de f ined  a s  being on top  of a  r i d g e  i f  

i )  i t  was t h e  r e s u l t  of a  s i n g l e  p a r a b o l i c  s t e p  s i z e  

c o n t r o l  on a  g r a d i e n t  s t e p  

i i )  jgZ < . 0 3  

i i i )  - G i s  not  nega t ive  d e f i n i t e  

Although n o t  t r u e  f o r  a l l  problems w i t h  r i d g e s ,  G was no t  n e g a t i v e  - 
d e f i n i t e  near  a  r i d g e  and t h e  t e s t  on G i s  used t o  p reven t  t a k i n g  an - 
unnecessary  a c c e l e r a t i o n  s t e p .  A0 i s  t h e  v e c t o r  between two p o i n t s  - 
on t h e  t o p  of t h e  r i d g e  which a r e  s e p a r a t e d  by a t  l e a s t  one i n t e r -  

mediate i t e r a t i o n  s t e p .  Once a  A0 i s  de f ined ,  an a c c e l e r a t i o n  s t e p  - 

tie = 1 . 4  AF - 

i s  used.  I f  such a  s t e p  improves t h e  payload,  the  next  s t e p  i s  i n  

t h e  same d i r e c t i o n  only  l a r g e r  



The s t e p  s i z e  i s  thus  inc reased  and s t e p s  taken along the  r i d g e  as  

long a s  t h e r e  i s  an improvement i n  the  payload.  For t h i s  problem, 

the  r i d g e  i n  mT as a  f u n c t i o n  of 0 i s  a  s t r a i g h t  l i n e  (what luck!)  - 
and l a r g e  changes i n  8 o f t e n  r e s u l t  from t h i s  procedure o.nce t h e  - 
r i d g e  i s  i d e n t i f i e d .  As many a s  1 2  s u c c e s s f u l  s t e p s ,  each w i t h  a  

l a r g e r  s t e p  s i z e ,  have been observed i n  i t e r a t i o n s .  

The numerical  d e f i n i t i o n  of A8 and t h e  i d e n t i f i c a t i o n  of a  r i d g e  - 
a r e  b e s t  understood through use  of an i l l u s t r a t i v e  i t e r a t i o n .  Figure  

E . l  shows a  sequence of s t e p s  which l ead  t o  the  d e f i n i t i o n  of the  

r i d g e .  The t o p  of t h e  r i d g e  i s  i n d i c a t e d  by a  dashed l i n e .  For t h i s  

d i s c u s s i o n ,  t h e  s u b s c r i p t  on 8 i n d i c a t e s  t h e  r e s u l t  of a  s u c c e s s f u l  

i t e r a t i o n  s t e p .  go i s  the  i n i t i a l  v a l u e .  The f i r s t  t r i a l  g r a d i e n t  

s t e p  was not  s u c c e s s f u l .  Pa rabo l i c  s t e p  s i z i n g  r e s u l t e d  i n  83. The 

next  g r a d i e n t  s t e p  i s  s u c c e s s f u l .  O 3  r e s u l t s  from s t e p  s i z e  c o n t r o l  - 
on an unsuccess fu l  g r a d i e n t  s t e p .  The v e c t o r  A5 = (33 - El, which 

j o i n s  t h e  r e s u l t  of t h e s e  two s u c c e s s f u l  p a r a b o l i c  s t e p s ,  d e f i n e s  t h e  

approximate d i r e c t i o n  of the  r i d g e .  The s t e p s  t o  % and E5 a r e  suc -  

c e s s f u l  s i n c e  they i n c r e a s e  t h e  payload even though they a r e  o f f  of  

the  r i d g e .  Note t h e  g r a d i e n t  a t  g3, c4, and c5. The a c c e l e r a t i o n  

s t e p  u s u a l l y  i n c r e a s e s  t h e  payload even though A0 - i s  not  a l igned  w i t h  

g. From t h i s  i t  i s  easy t o  s e e  t h a t  success ive  g r a d i e n t  s t e p s ,  even 

w i t h  p a r a b o l i c  s t e p  s i z e  c o n t r o l ,  w i l l  no t  work w e l l  i n  the  v i c i n i t y  

of a  r i d g e .  



Figure E.l Representation of the acceleration step 
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